
L. WJ-” /u71L>.+”f-J— —

LA-UR- 93.341

Author(s):

Supercomputer Debugging Horkshop ’92

LECEIVED

F~E 11 ~g~s

o
LA- UR--93-341

~E93 007.322

Jeff rey S. Brown

Supercomputing Debugging Mrkshop ’92
Dallas, Texas
October 7-9, 1992

submitted to:

,,f J

fllDUllONIIF THIS DOCUMENTIS UNLIMIIED

..-1,, “ ,,

LosAlarnos
NATi ONAL LA BOFi ATORY

Lm k WhnUl Mwmhy, m ●fimuwa mctiavqud qqxwtudty mrrwp, h qnmw ~ IIH U- d (hlikmla b lb II !; l~wtnwnt rM}ruwy
U* mnlmd W ?405MUk38. Ily mmplmm d tills●ti, lb ptthtmf mmgnlzm ltul ItM U H UwemmmiM rolmlm n nmakclunlw, myany ha ~ 10
PA at Iapmdum M p.ddhhd htn d Ilds mnirlbilm. w 10dbw mhm 10do w, Iw U S, WJWIWIM pUIpmOW Iha I m AIIIIIMIIINnlkwd I nhwmy
.--,. ,,, -1 k . ..A.i...-. *A.. 4.,. -. 4

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

Supercou!puterDebuggingWorkshop‘92

ILANILM

lNIRa

Dallas, Texas
october 7-9, 1992 hl/isT~

Sponsored by the Los Alamos National Laboratory

FORWARD

The Supercomputer Debugging Workshop ’92 (SD ’92) was held October 7-9 in Dallas,
Texas. The workshop was sponsored by the Los Almnos National Laboratory and hosted by
Convex Computer Corporation.

SD ’92 focused on topics related to debugger construction and use in a high-performance
computing envirmunenL The workshop brought together debugger developers and users to
discuss topics and experiences of mutual interes~ and establish a basis for future
collaborations.

The objective of the workshop was to promote a fme and open exchange of information
between an intedsciplinary group of debugger developers and users from the academic and
commercial communities, thereby facilitating technokqgy transfer and advancing the state-
of-the-art of applied debugging technology.

Program Chair: LarryStreepy, Convex Computer Corporation

Program Committee: Jefll?rown, Lus Alanm hational Laboratory
Bati Miller, University (ofWisconsin
Cherri Pancuke, Oregon State University
Dennis Parker, Cray Rmearch Incorporated
R&h We, Thinking M*~chinesCorporation
Ben Young, Cray Computer Corporation

Administrative Chair: LMnhe Ddnw, LOSAlmnos National Laboratory

Keynote Speaker: Mark Linfon, Silicon Graphics

Table of Contents

Addresses of Participants

The ABCS of Debugging in the 1990s
Mark Linton, Silicon Graphics

Los Ahunos National Laboratory
Mike Clover and Johnny CoUins

National Center for Atmospheric Research
JeflKuehn

ven@J@mi

Cray Computer Corporation
Ben Young

Thinking Machines Corporation
R&h Title

(hay Research, Incorporated
Dennis Parker andPeteJohnson

Sun Microsystems, Inc.
Ivan Soliemanipour

Kendall Square Research
Steve Zimmerman

1

5

25

35

51

6.3

83

89

9s

The Effects of Register Allocation and 115
Instruction Scheduling on Symbolic Debugging

Ali-Reza Adi-Tabatabai and Thomas Gross,
Carnegie-Mellon University

Debugging Optimized Code: Currency Determination with Data Flow 127
Max Coppennan, University of California at Santa Cruz

A Debugging Tool for Paral#el and Distributed Programs 147
Andreas Weininger, Technische Universitat Munchen

Analyzing Traces of Parallel Programs Containing Semaphore Synchronization 157
D.P. Helmbold, C.E. McDoweU, T. Haining, U(XC

Compile-time Support for Efficient Data Race Detection 169
in Shared-Memory Parallel Programs

John fUeUor-Crummey, Rice University

Direct Manipulation Techniques for Parallel Debuggers 179
Chem” M. Pancake, Oregon State University

Transparent Observation of XENOOPS Objects 209
S. B~nens, W. Joosen, P. Verbaeten,
Department of Computer Science K.U. Leuven

AParallel Software Monitor for Debugging and Performance Tools
on Distributed Memory Multicomputers 221

Don Breazeal, Ray An&rSon, Wayne D. Smith,
WiUAuld, Karfa Calkkrghan
Intel Corporation

Profiling Performance of Inter-Processor Communications in an iWarp Torus 239
Thomas Gross and Susan Hinrichs. Carnegie Mellon University

The Application of Code Instrumentation Technology in the Los Alamos Debugger 277
Jeff Brown and Richard Klumann, 1AMAlamos Natiomd I,aboratory

(;Xdb: The Road to Remote Debugging 305
I.arry Streepy, Rob Gordon, Dave [.ingle
Convex Computer Corporation

LJserNeeds Discussion Summary 353

Addresses of Participants

Ali-Reza Adi-Tabatabai
Carnegie-Mellon University
ali @m.cmu.edu

S. Bijnens
Department of Computer Science K.U. Leuwm
stijn@csJmleuven.ac.be

John Blaylock
Los Alamos National Laboratory
jwb@hani.gov

Brian Biiss
University of liiinois
biiss@csrd.uiuc.edu

Don Breazeai
Intei Supercomputer Systems Division
donb@ssd.intel.com

Gary Brooks
Convex Computer Corporation
gbrooks@pixe],convex.com

Jeff Brown
Los Aiamos Nationai Laboratory
jxyb@lani.gov

Chariie Burns
Mercury Computer Systems
burns@ mc.com

Mike Clover
l,os Alamos National Laboratory
mrc@lanl.gov

Johnny Collins
i.os A1amos National Laboratory
juan(?lanl.gov

Max Copper’mari

University of California at Santa Cruz
max@cse.ucscdu

Charle Fineman
NASA Ames
tineman@ptolemy.arc. nasa.gov

Thomas Gross
Carnegie-Meiion University
Thomas.Gross@cs.cmu.edu

Theordore Haining
University of California at Santa Cruz
haining@cse.ucsc.du

Carol Hakansson
Verdix Corporation
carolyn @verdix.com

Anthony Hefner
SAS Institute Incorporated
sasarh @unx-.com

Susan Hinrichs
Carnegie-Mellon University
shinrich@cs.cmu.edu

Peter Joimsen
Cray Research, Inc.
pjj@cray.com

Janis Johnson
ACSET
johnson@acset.be

Jeff I&hn
National Center for Atmospheric Research
kuehn@ near.ucar.ED[J

Mark Linton
Silicon Graphics
linton(i?nwrktwain.rad.sgi.com

Glenn Luecke
Iowa State University
gm.gr! @isumvs.iastate.edu

Jack McDonald
Microtec Research
jackmac@mri.com

Charlie McDowell
University of California at Santa Cruz
charlie@cse.wxc.edu

Mike Meier
IBM PSC
meier@paloalto.vnet. ibm.com

John I$3ellor=Crummey
Rice Univemity
johnmc@cs.rice.edu

Cherri Pancake
Oregon State University
pancake@ cs.orsLedu

Dennis Parker
Cray Research, Inc.
dep@cray.com

John Roth
SAS Institute, Inc.
sasjor@unx.sas.com

Terry L. Sigle
Electronic Data System% Research and Development
tIs@edsr.eds.com

Ivan Soliemanipour
Sun Micrmysterns
ivan@soliemanipour@ Eng..Sun.Com

Eric Stotzer
Texas Instruments
eric@tools.micro. ti.com

Larry Streepy
Convex Computer Corporation
streepy @convex.com

Wlchard Title
Thinking Machines Corporation
titie@ think.com

Wheels Vanderweele
Verdix Corporation
wheels @verdlx.corn

Andreas Weininger
Technische Universitat Munchen
weininge@informatik. tu-muenchen.de

Ben Young
Cray Computer Corporation
bby@craycos.com

Steve Zimmerman
Kendall Square Research
z@ksr.corn

Dbx evolution

The ABCS of Debugging
in the 1990s

Mark Linton
Siiicon Graphics Computer Systems

lintor@sgi.com

Using adb/sdb

6,000-line MS project (pdx)

Port to VAX, 680x0, SPARC,
MIPS, RS/6000, ...

Support for C, F77, Modda-2, ...

25,000-line blob

Graphical front-ends (dbxtool)

Semi-retired

Dbx contributions

C)rganization – abstract data types

Portability – one week/machine

Multilingual support – depends on compiler

Ease of use – naive programmers

Surprise: Longevity of stabstrings

Simple design and implementation
(1 week on compiler, debugger)

Goal was to limit modifications
as, Id, nm, ar, ...

C)ther designs offer better clarity and
performance for specific environment

BUT stabstrings were best choice
over Dbx’s active lifetime

Sadly, DWARF isn’t a significant advance

Notable mistakes

Slow breakpoints

Slow to adept regression tests

Replicating full environment
Symbol table management (compiler)
Expression evaluation (compiler)
Execution (shell)
Source viewing (editor)
,Made the jmp/ementation easier?

The Alext Genemtjon

Old problems
Compiler optimization
Integrationwith environment
User interface

New(er) problems
Higher-level languages
VMdervariety machine architectures
Blendingwith performanceanalysis

As easy as ABC ...

A is for Abstraction

Machine’s model of computation

Program’s model of execution

User’s model of (misunderstanding

Model of amputation

Derived from language, compiler,
operating system, machine

Examples when debugging:
Dynamic loading is part of model
Instructionpipeliningis not

Reflected in object->sourcemapping

Understoodby userl

Debuggers allow access to ALL
computational state

Non-local variables

Execution status (e.g., goal stack in Prolog)

Automatically-generated processes

Transparent access to network

Model of execution

Programs may contain more abstractions

Hidden controlflow (e.g., methoddispatct

Hidden data (e.g., access fudctions)

Applicationdefined presentation

Key differerwe from interpreters

10

Examples from C++ and InterViews

stop in g-draw

stop in Button::draw

ShOW dag(gtyph)

For now, add DebugGlyph objects

Model of misunderstanding

Debugging to see what is goingon

Task-oriented user interface
Traang/watchpoints

Applicationaiented presentation

Fast turnaround

11
12

B is for Big

Layer on top of lots of library code

Cdl up and downlayers

Run for a long time

Allocate lots of memory (free some)

Process lots of data

Checkpoint execution state

Selective presentation

Show im@ant information

Navigate to explore

Domain-specificvisualization

Sharing views means sharingdata model

Analoaous to database problem-

13 14

sphics
fms

INVENTOR

Scale 1 D

9

~: Examples of Manipulators

Transform
Box

Trackball

Document editor

1
,<..,;,.,,:,.::,,.
$,.:

~ ,,

.

,)

,,,.,
> ‘:

,!
...
.,,

k

6

C is for Concurrency

Performance-oriented

Simplicityaiented
The kernel never blocks.”

Users want it (e.g., printing)

MahWream in -3 years

Debugger challenges

Consistencychecking (fast)

Symbolic executiotinterpretation

Presenting large-scale concurrency

Concurrent debugging/analysistools

15 16

A few wi/d ideas

Objects R Us

A debugging framework

Runtime compilation and optimization

Why objects?

Users like objects

Programmers like objects (sometimes)

Applications-> objects

Computational modules -> objocts

Distributedobjects
anywhere, somewhere, everywhere

17 18

A few wild ideas

Objects R Us

A debugging framework

Runtime compilation and optimization

Users like objects

Programmers like objects (sometimes)

Applications-> objects

Computationalmodes -> objects

Distributedobjects
anywhere, somawhere, everywhere

17 18

A debugging framewoti

Simplify

Use existing compiler and editor

Expose internal components

Make available over network

Allow concurrent “users”

Runtime compilationandoptimizatio

Make compiler invisible

Dynamicallychoose performancelevel
Simulate
Interpret
Compile
Optimize

lnline/optimizeacross linkageboundaries

Give optimizerdirect access to profile

Source compatibility

Promisingresultsfrom Self compiler

19 20

.

- Page1 of 3

1

?
2

3

4

.

I

User Perspective

.

Large Code

46,055,728 bytes

The Code changes

b
9

. .

We add about I(MMIOlines of mods every 4 months
4

Portions of the Code are Multi Tmked

We somtimes use LDi3/D13T on a “DROP’Yile”-
●

So5d57-3738

Parallel Debugging “
9

.

.
.:

1 An mm in Our Mdti ‘Ihsked pzdmge may not k reproducible
D .

(thefe is no replayscheduler capability)
?

2 W use a D~ to debug Multi tasked code

3 ‘Ihe debugger will stop the code when any processor reachesa
&

set breakpoint and reports the processor

.

Page 2 of 3

“

. \

(a conditional Ixeakpoint on a particulm pmxssor would k niceJ.
#

.—

[mAbmM~~

k AImmLFkw k-.
87M5

m 67-373U

.,

.i

1-

.

, Page 3 of 3

Nice Things to have

,

.

Paralleldebqgging of 2 versions with comparison1.
;

2 list atl opemd files and their attributes

D
3 Save and Restore

4- A FQKllWN representation of what the optimizer has done

5 time listing provided in debuggers should designate new coding

6 The ability to spell
/

7 The option to deoptimize portions of the code at debug time

8 7he ability 10 list the Iibfa.fy a module comes fmm .

9 Conditional breakpoints (that are fret)

.
.

Mb prof.s
J,, ,,,, ,, ,,.,, :,: ,:,,,,, ,,

..,.,.. -A4,i;

1* wmrsion1 .S
bullc: o*/al/9a ●t 12:29:51

81OA

●ttaehd co ~luto file: /usi/tmp/ld32231 .copy [copy of prof. m)
mtori~ dmb~ ~ . . .
~> llmt mourco

. . Proqrcm ● uma
dimmrmion a(n). ao(lo), tl (lol, a2110), tiltalio), chkro91221
alnnmlon V1 (2zl, obths 122)
mlncw [-0, MM (1))
point-r (Dcgai, cq21 (1))
POintmr (-oumo, tuso(l)I
polntor (muml, ●ual [i))
-M-lot (a (1]]
mcg21-loc (z (1J)
-Umo- 10C(OO (1})
-uMl- loc[al(ll]
MUmz- 10C ma (1U
lkmcm-lo)
do 10 l-i, u

● umo(l)- i
● uml (l)- i
anmll)-i
Chkrog[l)-1.
j-z”i
chkragljl -1.
Vi(i) -1.
Vl[j) -1.

N

II BOA

A41=> rol 1 mare. 50
9100 10 corm 1nuo

chkr@ (22)-1.
mm(n) -11.
idl-z
M

cdlr$ nutscolar
do 1S0 lk-2,1kmos

j-j+tdl
●uO(lk)-chk rWlj)-auuO (lkl~xno(lk)
●wl[lk)-chkrog (j+idll *mualllk)-aM[lk*l)
doLca(l M]-auO(lkl-mUl[lk)
●btho[j)-ano(lk)svl (j)
cg21(lk J-O.

$180
Slson 1S0 conclnuc

wrico(-,~) [aual(ll, l-l, lo}
atop
● nd

AUXX> run to Sl#Oa
uoor procmm●to~ ●t program countor: 371pi - S180A 0 AUXX()
AUXIO idl, j,chkrog (41, aun0141, ~no(4)

0000024J752b: ldl - 2
00000243753b: j - 2
00000243701b: chkrog (4) - 1.00 G090a+O0
00000243C12b: ●uaO[4J - 4.0000 OOa.00
00000243615b: ana(41 - 4.0000 OOa.00

AUXX> prim enhrM(4) ”aumO14]”ano(41
1. 6000000+01

m> bkp slsob
AUXX> run
u#or procoso oto~ ● t program countor: 417X - SISOB C AUXXI}
Auxx> ●uMo(4)

00 fX1024JdJlb: ●unO(4) - l.~OOOOOm.01
AUXX> ●na
hilling u-or procou . . .
●9

m

9.

.

.

\

ldb varslen 1.3
built: 09/21/92 ●t 12:29:51

●ccachod to xbmluto fllq: /usr/tmp/ld32000 .copy (copy of pro f.x)
●ntorlng d. bug xoda . . .
AUXX> run to SIOOa
usoz process ●oppd ●t programcount-r: 451pa - S180A O AUXX()
AUXX> llSC Sourcs .

S1OB 10 cent InuO
chkrag (221-1.
xno(ll) -11.
1o11-2
j-z

-> SIMA do 100 ik-z, lkmax

I
j-j+ldl
●uxO(lk) -chkrog (j)*auxO (lk J*xna(lk)
● uxl (lk)-chkro~(j+ldll ●auxl ilkl ●xno(lk+l)
dolta~l)-auxO(lk) -auxl(lkJ

L●bths(j - (lk)*Vl (j)
cg21(lk)-O.

S1OOB 180 concinu.
writ. (*, e) (auxl (i), 1-1,10)
Stop
● nd

AUXX>j,ldl, chkr*g(4), auxO(4), xnQ (4)
00000244014b: j - 2
00000244013b: idl - 2
OOOO0243742b: chkroq(4J - 1 . 000000.+00

00000243721b: tuso (4) - .0000 OOO+OO

unablo to complst9 131 comand
●ddra8a ●xcsoda longch of data ●raa
Auxx> mauxo

OOOO0243702b: muxO - 0600000000000000243670
AU(X> 0000000000000000243670 b\4

00000243670B: 0400014000000000000000 0400n24000000000000000 0400026000000000000000
00000243673b: 0400034000000000000000

AUXX> doe
AUXX> 0000000000000000243670 b\4

00000243670B: 1.0000000+00

AuXX> prlnc chkrog(4)”4. *4.

1. 600000m+Ol
AUXX> mnxn.

OOOO0243666b: ~n. - 03003
AUXX> S3003\4

00000243653b: 1.0000000+00

AUXX> bkp $ltOb
AuXX> run
user proco$s stopp.d at program
AUXX>WIJUXO

00000243702b: ~8ux0 - 03896
AU)(X> 03B96\4

00000243670b: 1.000000,+00
AUXX> ●nd
kill lnq u-or procaas . . .
● t

2.0000009+00

2.0000000+00

countar: 467pa

000

3.0000000+00 4. 000000*+00

3.0000000+00 4. 0000000+00

- $1 L40B@ AUXX()

. .

●

,
,

+imvwwE/J//@7A@k-,q

- C7.5S

- LJNIC or

n FL455W Li.h.@@.h4fM

32?3.
32BLI.
32eL .

3282.
32133.
3284.
3205.
3206.
3287.
22’98.

if (and(jhqitez, S) .aq.0) then
* 470 j-bxp2, bb, incz

jl-j - krnx
~abtc(j]-- (a= frql(j} c~(jl-l)+avfzql {j), -(jl-l)

& +awfrq2(j)*W(jl)+avfzq2(j)*~(jl }
6 +avfrqa (j)●- (j]+avfzq3(j)~vt(j }
6 +avfrq4(j)*W(j-1)+avfzq4(j)%t(j-1))

dediabtc (j}-dediabtc(j) ●dthyd*O.5
470 ‘=srIt inue

●l ze

mcfttyaza
mc7hyd2a
=7hyd2a
mcmyda
mc7hyd2a
=7hyd2a
mc7hyd2a
mc7hyd2a
mc7hyd2a
9c7hyd2a
u 7hyd2a

243
244
245
246
247
248

.+01172 S25FC -
Ol172525pd -

,) 01172526pa -
01172 S26pb -
01172526pc -
01172526pd -
01172527pa -
01172527pb -
01172527pc -
01172527pd -
01172530pa -
01172530pb -
01172530pc -
01172530pd -
01172531pa -
01172S31pb -
01172$31pc -
01172531pd -
Ol172532pa -
01172532pb -
01172532pc -
01172532pd -
01172533pa -
01172533pb -
01172533pc -
01172S33pd -
01172534pa -
01172534pb -
01172534pc -
01172534pd -
01172535pa -
01172535pb -
01172535pc -
01172535pd -
01172536pa -
01172536pc -
01172537pa -
01172537pb -
01172537pc -
01172537pd -
01172540pa -
01172540pb -
01172540Pc -
01172540pd -
01172541pa -
ol172541pc -
ol172542pa -
01172542pb -
Ol172542pc -
Ol172542pcl -
oll-12543pa -
Ol172543pb -
01172543Pc -
oll”)?543;Ni -
(711”):7441M -
(!llY2=144~)(: -
o] 172’IU’)}1.I -
oll’)#?545J)t,l -
ollli!’)dr)\)t” -
oi]”125qrj111i -
[)1] /~rlqfIII.I -

024741
002007
024662
024542
031656
024444
030046
024261
176702
024356
030035
024147
176602
330016
030115
030445
165567
025763
025741
024757
030775
176402
024350
025464
030436
030007
176302
024755
030775
030335
165734
171657
025165
024146
025277
012 101202173
1123 00000000
024277
030316
030115
030004
176202
024454
03044s
025577
015 101202173
1156 00000001
024577
030007
176102
024753
030773
024652
030663
025377
01.3 101;’ 0;’1’1]

11 14 Ooolloooi!
0:!43”1’/
165412
1’)1/64
010001
I lb’;()~

A7 B41
VL A7
A6 B62
AS 042
A6 A5-A6
A4 044
AO A4+A6
A2 B61
V7 ,AO, A2
A3 B56
AO A3+A5
Al 047
V6 ,AO, h2
AO AI+A6
Al Al+A5
A4 A4+A5
V5 V6*RV7
B63 A7
B41 A7
A7 B57
A7 A7+A5
V4 ,AO, A2
A3 050
B61i A4
A4 A3+A6
AO 0+A7
V3 ,A0,A2
A7 MS
A7 A7+A5
A3 A3+A5
V7 V3*RV4
V6 V5+FV7
B6!J Al
Al 046
B77 A2
A2 00240436pd
00000000,A2 A3
A2 077
A3 Al+A4
Al AI+A5
AO 0+A4
V2 ,A0,A2
A4 B14
A4 A4+A5
077 A5
A3 00240436pcl
CIIOOOO01,A5 A6
A5 077
AO 0+A7
VI ,A0,A2
A7 053
A7 Al 4A5
A6 B52
A6 A6+A.5
B77 A3
A3 002404 lh~hl
00000002,AI A4
A3 1177
V4 V1*RV2
v‘1 vf)1rv4

AO otA)
v‘) ,A(), A:

IPKARD: $2130+:J30pc
:

. . . 4a~cpQ -

::1’254~pb -

Cll~2547pd =
311?2ss9pa w
311~2550pb -
Sll T2550pc =
111725s9pd -
Cl172S51pa -
roll 2~
all”2551pb -
:ll?2351pc -
::172552pa -
Cll%S52pc =
31112552pd -
Jl172S53pa -
01172SS3pb -
91172553pc -
31172553pd =
311?2554pa -
01172554pb -
Cl172S54pc -
31172S94pd -
01172S55pb =
31172555@ =
:1172556p~ -
01172536pb -
31172556pc -
ol172556pd m
01172557pm -
01172357pb -
01172M7pc =
011725S7pd =
31172560pb -
01172560@ -
91172561pa -
01172561pb -
0i17Z561pc -
9i172361pd -
:l17::62pa -
Cll~2562~D =
0117Z562pC -
~l\72~~2pj -
~iiy;~!iBF~ =

~11-~~6jFE =

Gll:Z563pe -
Gli*Z5EJpd -
>ii-i564pa =
~ii-~564Fc _

‘64Fd =Zii--Za
:1” “Z565Fa -
~!i .::~~~p -
:1:-i:~5Fz -
~ii-~~[5~~ 9
‘ii-..-tE 6F4 -

. :~%rr =.A
. -%&G..-;., #--

7 . ..- =~~~1 ------
. . “~”[a-

.“~l -
. ‘.1 -

I..:”* .11-
. -~.l -

:--- . --g{ -
,. . -1.-

Z13 iG12C21-3
1033 ;3:3:::2
l~t332
165235
171672
333007
176402
s24745

330775
313 101202173
1030 Ocaooaoo
17Clo2
165541
171765
0300C6
176302
C24660
:30665
024341
025477
014 101202173
1145 0J303033
024477
:3153@
3300al
176202
332123
16S432
171674
025477
;14 101292173
1145 ooGaooo4
924477
324S42
:30151
:3C9C4
176532
:25142
?24543
J30453
525443
?27!90
:33027
i76102
:24365
:25541
;15 lo12fJ:431
i76702
165457
324364
1-6332
1-1264
1~~-i3
i“lE2-
i.Z~’S

-&-iC4~-
;1 .:6

.-

1..

:--i.

i . . - .-

a. 4
-.4”.;*-:”-

1,.. .-iml

‘r=ti ~-

1

A7 A7.A~
A3 C324C436Fd
AO 3G03;9ZC,A3
.1-r ,A3,A2
V5 V4”RV1
wJ7 V6-W5
M O-A6
V3 ,A3,A2
A6 B60
A6 A6-A5
A3 B41
~77 A4
A4 00243436pd
093C0037,A4 A5
A4 O-.1

A5 A3-1
AO O*AL
w ,A0,A2
Al h29A3
V4 V3”RV2
V6 v7-w4
~77 A4
A4 09240436pd
09ZOO094,a4 AS
A4 B77
A5 B42
Al A5”Al
A~ C*A4
V5 ,M.A2
B42 Al
A5 B43
A4 A5-A3
E#43 A4
A5 L.
Al C-A?
‘J i ,A3.A2
A? ~E=J

B41 AF
As ::~~: .:fi-~
U1J .A!,A2
.4. . 73”$7”
A? ❑tL4
V3 ,A:,A:
..: ~~.~~~
, .-m. “;] ■P”J1

6
.-f~t..... .
.... 5--F”:~
..- q~-u..--. G.
A: “*A8
.A ..\.- .:
A .A’ i-
.A .A; .t-

+A- .~A4
sA9{:ii-a-jl!

A-. 4-4’*I I

. ..- ..* -.-F #-

IPKARD:9202+33ZFz
14CSTK:NPCKTP

IPKARD:320Z*331FZ
MTISN:ISN

i=F:-AXK.:::: - ●:

.,.

.-

.-

#.- .{

01172572pb -
01172572pd -
01172573pb -
01172S73pc -
01172573pd -

@,:::;;:;:;: :

. . -- --
011 101202173
1016 00000001
030776
071717
1357 00000763
1350 00000651
006 004753627

Su +Al

Al 00240436pd IPKARD:$280+330pc
A6 0000OOO1,A1 :+lp~
A7 A7+A6
57 +A7
00000763,A5 S7 LASNEX:$100+14pd> ~u. # ‘L~\<
00000651,A5 SO LASNEX:$90+2pb J

J 01172745pd NHYDRO:$472B
S.+x %
*L r II /j

3,,

.rol S470a
asave tfol
run to $470b
breakpoint reached at 01172574pd - NHYDRO:$470B task
.dthyd

r~ottask

DTHYD- 1.0000000-05
. kalm
KALM- 202
.dediabtc,9 ~p~d(+
DEDIABTC(l) = O 0 0 3.441064e-15 O 0 0 0 0 ‘- - v~i4;h&;
restore tfOl L
.aet dthyd-1.e-b

i%~i

. run
\oo5pc2
[2.0001
\oo5?
8 INFO: mx-e on pm from 1900 to 2300 10/06/92
6 INFO: pm friichine 8 tue 10/06/92 1900-2300. . .
6 10/06/92 09:40:00 tr- 29.196 RUN +jfnk
8

jfnk auapendod ● fter cycle 118, t- 4.4507.-03
#\oo5i
.rostom tfOl

6;;~2525pb = NHYDRO:$470A
raturns to O0566700pb = EI{YDRO:$20t)+6pc
racurna to O0210362pd = EPHYSC:EPHYSC+51pd
r~turns to 00026021pc - ECYCLE:$60-lpa
returns to 00000633pd - LASNEX:$80-lpd
end of trace
.sub=nhydro;bkp S470b;dthyd
DTHYD- 1.0000000-05
. sot dthyd=l.a-6
. run
br~akpoint reached at 01172574pd - NHYDRO:$470B task &l-fi L

roottask LL fi\
. dthyd
DTHYD- 1,0000OOe-06
.dedi&btc,9
DEDIABTC(l) = O 0 0 3,441064e-15

10C $470a
01172525pb - NHYDRO:$470A
,di mne l172520b for 5
‘Yl172520pa = 030053
i)l17J520pb - 023330
fJl17i!520pc - 025055
ol17i!520pd - 030056
f)ll”)L’521pa - 030630
f)ll’)i!5i!lpb - 025056
011’lils:lpc- 025641
(’)11’li!’j2i}~,l- 021050
(,)1l’1,’~i~,![i~- (710652
!)ll”lJ’jJ2pb= 0:5042
oll)i!3;?i!pc- U2565’I
01 1“1.’’),l~}lili- 107O (-)(ln(l.’”lfl
(]1\!.’’!.!1}}11 - () 10/’)4

01 l“),’’).’! 11,. - 1),’ !hlf]

1111).” ,,’ 111,1 -’ (1,”) /!1(1

1): I /,’’),’ 411.1 - (1,1 !, (,1;]

!)1 I).’~\.’4lll1 - ().” ,1) !,,’

l)) ! /.’$),’ 41)(. - 04 1) [)()

011),’’1. ‘4[}(1 - [)/4 hl)f)

AO A5+A3
A3 S3
B55 AO
AO A5+A6
A6 A3tl
Bsb AO
041 A6
Ao $ Ij

Afi A5tA;!
U4J AO
[45’; Ab
A(_) 00~)OJ’~II),A) :: AMI’I,K: .;, 1(),]1)1,1 I, I,,, - ‘,.c{’J ., #

Al A’, IA4

A (] :; I

l\ho A)

Ilf, l Al,

l\ fI,’ Al) ,.
,, I .()() .7., t r., .
:;1) ,1’(II) -’ ,,\

‘,/”,1 ‘i’

11,

I

— L-orau? r

I

)
I
I

b. _, - ._ ._ . . .-

I

1.

,
I

I

A User Perspective of Debugging on Supercomputem

Jeffey A. Kuehn

National Center for Atmospheric Research
Scientific Computing Division

ABSTRACT

Typically, when a user brine a problem @ be debugged b the N(2AR&D consulting
Mice, the code is peppered with print statement. The print statement do not provide
output data from the simulation, but rather, they record intermediate values of solution
variablee and information about entry and exit of subroutines. In other words, print state-
ment are chcwn ae the preferred debugging method instead cf debuggem which would
allow the user to stop and start the code, print Variables and investigate the stack as
necemary. When asked, the users are quite clear about their reasms for not using the
debuggers available to them, Their re~ns involve the complexity of the debugger’s inter-
face. and a mismatch between the user’s runtime environment and the debugger’s support
environment. Thie paper summarizes these iames and suggests several ~ib]e avenues
for addressing them.

1. INTRODUCTION

The uwr community at NCAR has a great deal
of experience in supercomputing, on machines
from many different vendors at university, cor-
porate and research sites all over the world.
Many of these users have participated in evaluw
tions of many machines often very early in their
production cycles. Several hi]ndred problems
lJ;LWthrough the NCAR/SCD consulting ofire
rvery month, but only rarely dces someone try
t~~ U* w debugger –egtimates based on ~ccoun~
ing sttitisticw suggest that Ies than one ptrcent
of our programmers use the debugger on our
(‘ray }--M}% Thp typical approach IS to insert
print ~tatrmrnts throughout the code to rec{ml
thr !’ntrv aIId exit of wihroutim!s nnd prillL
v:dues of crilwa] varimhlm at strategic locwtmn~.
SIIICP both tracing suhroutirw rntry/vxit :md
rxiullln:lt.iotl 0(critwal viwiahles {’W be acrolll-
plistwd with x d@buggrr, Lh! lluthtw hcgan illLrr-
vIrw Inq uw’rs :Ln(l iih~r r(msu!tanL~. ‘1’h(’

interviews revealed several reasons why uwrs
prefer debugging with print statements over the
use of a debugger. In many cases, these “user
complaints” also wggest areas for improvement
of current debuggers,

2. DEBUGGER AVOIDANCE TACTICS

Z 1 Print 9t~tamant9

[J.sers’ preference for the print st~terncut Lrch-
niquc of dtbugging stems from five I]&sir iswms.
(I) l’lw mech~ics behind the ~pprow’h arv
ha9ic~lly intuitive; any effort exprndwi is Sprut
towords interpreting the data mnd limling LIIV
hug. (2) The approach has no Irnrlling rurvr
:LWoci:ltwl with it Sinm? It can h’ dtmv Ill I.hr
Ianguuge of Llw original code with which LIIC
user LW(prwmmably) familiar. (3) ‘h iqq)r(mrh
works on :LIImachine arrhitmturrs am! ~qwr:~t-
ing @~ms sinre mwr 1/0 df=pFndsonly ~>nl)rt>
grnnlming liill~uil~~ st:md:wds. (4) It works

, ,,

interactively, in batch queues, in any job class,
and under any time and memory constraints
under which the original code ran. (5) It even
produces rc3ults in c- where memory
overwrites of static data or stack space cause
the program to cr~h far from the point at
which the error cccurred; in short, the method
is fairly robust.

Print statements are not the only debugging
method usem apply b their codsa to avoid the
debugger. FORTRAN-lint (flint) marketed by

f.PT allows a user to analyze a code in great
detail, performing syntax checks, conformance
m standards, argument consistency, etc. This,
however, is not a substitute for a debugger,
since flint usually produces a huge volume of
informational mamages and warnings, meet (if
not all) of which have nothing to do with the
problem.

S. h4AfCING DEBUGGERS MORE USEFUL

User complaints about current debuggers fall
into two categories. Fimt, there are complainw
about the user interface being difficult, incon-
sistent, primitive, or incomplete in one way or
another. The second category deals with how

debugger fitY (or rather doesn’t fit) inta the
wer’s computing environment or paradigm.
Mat of these complaints are relatively straight-
forward to sddres,

S 1 [Jrnr f.ntarfsce kues

$.1. f Intuitive fn/er/ace: The strongest com-
ment made in the user intmvieweand in fact
the only commer,t unanimously echoed by all of
the users--involved the long Icuning curve for
a user approaching the debugger for the first
time. The user interfaces muut be designed to
I)e iiltultlve even ~ the novice uwr (If ~

IIebugger It is obvious that no user will rvrr
usr A (Irhuggcr unless they have encounterml a
prol)lcm III thrir C(XIPfor which the :,)lution IS
I]ot :ippiirrnt. oftrn by the tIIIIr .somrmw
rrw)rts w uwng a debuggrrl they are :dreudv
fruslr:ltm] id probably cursing rvery pmce of
wlicon in sighl It 13 rvnsonnble b ilSUlll~ that

tlli~ WW of mind LIInot condurive to learning a
11[’w w)flw:u’r p:u.kxgc, t’s~ccla]]~ (Jilt’ :L~

complex as current
be noted that since
infrequently, every

debuggers. Aim, it should
users apply the debugger so
time they go to use one,

they essentially must relearn it from scratch.
One user even went = far as to say that his
concept of a good debugger would be one for
which he didn’t need to read a man psge, It is
incorrect to aesume that users will have acc~
to printed documentation-vendors supply a
limited number of copies of free documentation
which ends up in offices and libraries far from
the users’ desks. Suggestions on how w addrem
these isswes include:

Provide a r.uw interface that the user will
find intuitive enough so a manual or help
function will not be needed,

Take full advantage of the graphics capabili-
ties of a windowing system (X-Windowe
with Motif or OpenLcmk at a minimum) to
improve the appearance and intuitivenem of
the interface.

Provide a detailed online help facility for
additional user support even though the user
interface is so highly intuitive that use and
function are obvious to the user,

Add a “printpoint” capability to the
debugger that functions Iike a breakpoint
except that when a printpoint ia reached, a
list of user-specified variables is printed.
Allow users to specify the format of this
output.

Along these same lines, add a “watchPoint”
capability to the debugger which simply
notes when execution pms through a par-
ticular line of code. The watchpoint facility
should also allow the user to trmk entry and
exit for subroutines--a list of the routines in
the current sequence of calls displayed on
the screen would be useful.

Add conditional chmses to breakpoint and
printpoint stnterncuts that idlow the user to
Sl(J~ the code or print the d:hl:~only whrn
sl)rcillcd rondilions m true. ‘rhc Hynlax Of
;LIIVcc)nlfncm programming I:mqu:lge (such
;M(~or FojlTl~AN) Aou!d he accrplrd)hI.

!tlake breakpoint.q, printpoinL% and w:u.rh-
pNIlts instidlid)lr hy pnting :md rlirk]ng ;11

-3-

a menu and a ~urce code window.

. Make debugger and sys~m error mesmges
printed by the debugger clear and simple.
“Operand Range Error” means nothing to

mcmt wm. Perhapm albw a user to pin~
and-click an error meassge, then click an
‘*explain”button.

9. 1.I? Graphie8 ad an Aid: Current debuggers
presume that the user is familiar with the code
they are trying to debug. Thrn smmmption is
often incorrect. More frequently, usrms either
inherit or borrow a program from someone ebe,
then they try to modify it for their purpcw. A
graphic display could be of great -istance
here:

●

●

●

●

●

●

●

Represent the calling tree with a flowchart
graphic.

Display the stack traceback path by
highlighting the appropriate ncuies in the
flowchart graphic of the calling tree. Croup
system library routines for convenience.

Albw poin~and-click scc~ to subroutine
source code via the calling tree graphic.

Represent the data structures and memory
map graphically,

Allow the u=r h highlight routines in the
calling tree, and have the debugger highlight
the corresponding static data areas in the
memory map, This allows usem to *G what
i9 adjacent to overwritten structures.

Allow direct poin~and-click scce= to global
data structures,, and allow poinkand-click
accem to local data via highlighting the cwl-
Iing tree and pressing a button to see local
data structures expanded.

All of this should be implemented under X-
Windows.

3 f $ Data Flow A~alysiw Itisvery difficult to
examine large Arrays by prirting individual elc-
nwnts or looking at long lists of numbers.
Printing individual array elements worked fine
on computers of 10 and :? years ago, but the
fOrtt’ Of MID@’rC0mPUhr9 Is to manipulate mm%

qiv? qurnntili?s of data. Could it
emphasis of debugging nrcds to br
logic u) data? The advrnt

be that th~
~hiftmi from
or paralb’1

processing-which
deterministic orderinu

introduces a non-
into the program logic—

may further underscore this shift as we become
more experienced. Combine these with com-
puter graphics that allow the representation of
huge quantities of data in a format which can
be examined very quickly:

● Provide the ability to graphically display
large arrays w line graphs, contour plots,
scatter pbta, and his~rams.

9.1.4 Languages and Symbols: Computer
simulations are becoming more sophisticated in
taking advantage of the differences and
strengths of various languages, including FOR-
TRAN, C, and bmbler. The user should be
allowed to debug their code in the language(s)
in which it was written. The references to sym-
bols in debuggers need to be more consistent:
one debugger prin~ symbols with oue syntax on
output but requires a different syntax for sym-
bol input. Finally, ail of the language’s con-
struc~ should be available for referencing vari-
ables. Therefore:

● Provide the ability to print entire data
structures as well as sections of a data struc-
ture in high-level language syntax.

● Provide support for all languages and inter-
Ianguage calb.

s Keep symbol format consistent throughout.
When a symbol is written to the screen, it
should be exactly the symbol a user would
type to view information on the symbol.

9.1.5 Complete Environment: A debugging
.semion frequently runs as cycles of editing, com-
piling, running code, then running debugger;
often the last two are combined. Siluation~
aruie where more information w needed about
what is happening within a ~articul~~ ~u~rou-
tirw, so ‘users would like to “turn-oil
optimization’’-+m ‘~at subroutine -- th kl
requires recompiling and linking (Jf t’m routine
in question. Within an iterative procr.w Huch M
thi~, rntering and exiting w series O(utilitim
frwl~ like extra work und .secms wwkw:m!
‘1’hrrrfore:

● Add compiler, loader, und rditmr ~nterfwvvi
within the delmgger whrn chmngm :lrr mmdr

-4-

to the acmrce code, then when an “update”
button ia pr~d, compile and m-link the
code. Preferably, recompile only th-
piecea of the code that require updating.

. Allow usem to recompile and reload pieces
of a code with optimization turned off. This
should be implemented as aa “unoptimize”
button which, in reality, recompile without
optimization and relinks the code. Prefer-
ably, recompile only th- pieces of the code
that require updating.

● It may be useful to incorporate syntax-
checkem and code analyzem such ae lint,
lPT’s FORTMN-lint product or similar
tools. However, it should be noted that
while these toob are useful, their application
ia more limited than that of a compiler,
loader, or editir.

8.2 u- Envlmalment b

Software designeta and computer support stafl
usually do not have constraint placed on their
use of a computer; this b not tie case Jor users.
Uswr codes typically run in a batch environment

with CPU time limits and memory limits.
Because a batch queuing system allows more
control over the job mix, the time and memory
Iimitu for batch proceming are typically more
relaxed than thw for interamive work. Addi-
tionally, users are typically charged for their uae
of the machine, baaed on algorithms containing
CPU time and memory residency factom among
others. 9ecauae some modeia and simulations
hav~ large memory requirements, users must
often multitask a large code. Finally, because
the users write their jobe to run in batch, the
tools they use are not the name m theme often
used for interactive work.

,9,2 i Time: Frequently, a code will run for
wv~ral hours in a batch system before craahing;
in ttw cases of codes that do crazh early in the
job, there rnn still be a significant blork of timr
(or start up fh~iiu= of situations like thi~,
intrrwtiw ~lrhugging i9 not always prmtirrd,
mperially if th~ code must Ix run wilhoul
q~t imizwtbn on~ user rxpl~inml thnt he could
Lurn oroum{ [ivr runs with FORTRAN Wl?l”l’11
~tntemcnls inscrlwl into stra~cgic pl~es in llw
hmr ILtimk an unoptimized v~rwon of IIISrodr

to crash once. Thus it iz critical to:

● Provide source level debugging with fully
optimized code.

● Report as much information aa pomible
from a core dump without the need for the
user to repeat the compile/run with debug-
ging turned on.

9.4?.e Memory: For machinee tha~ swap
memory instead of paging it, large memory
procemee can typically be run only through a
batch system. Thue if the ca!e ie too big, the
user must debug with print statement unle~
the code is to be debugged on a near-dedicated
machine. Perhaps:

. Offer a memory aegmenting/paging mechan-
iem to keep huge data arrays on eecondary
storage, Admittedly, this ie the most
difficult suggestion to implement.

9.~.9 Muhitauking: Debugging multitmked
job haa been a core spot among uaem for come
time now, Debuggem eeem b i~rely sup~rt
multitaaked code, and when they do, it i%often
not ~ible to run the debugger with [iv mul-
titasked codee, This ia not the caae for all ven-
dore, and those who do support multita~king
should be applauded for their efforts like
who are not currently providing multitasking
support must:

● Provide eupport for debugging live multi-
tasked joha.

. Attempt to provide a representation of a
multithked Job which
wwrs will find intuitive.

s Provide viaual:zation
d~bugger to uaaiat the
multitasked job.

&quential-thinking

tmla within the
user in monitoring

.Y2, f Tools: (he vendor’s debugger rrquirrs u
code to be split up, onc subroutine or function
per file, before sourre-level debugging is pmwi-
hlc, l\t thi.q point, a twl such aa thr [JNIXm
in~lke ut,ility is nw+d to keep track of all t.hr
plwc~ nnd put them hack ti~gethvr in w]
cl{icirnt mann?r. Worse ypt, for thr s]ighllv
Imm’ sophist irmtrd uwr who had rrrmtrd mrwl-
ingful gnmpings d fiulmmtimw ml funrtmm
wilhin film ILINIphwcd thcsr gr[mpings umlrr

-lJ -

control of make, the makefile had to be rewrit-
ten from scrawh. In another case, a vendor’s
debugger failed ta work with one of the
vendor’s compiler extenaionn that allowed file
inclusion, making debugging a total nightmare.

s Ensure that the debugger supports all com-
piler features,

● Keep the debugger’s functionality indepen-
dent of other software development toob:
i.e. the debugger should not require the user
to use anything except the compiler and the
loader, all other -b should be optional,
The debugger should be able to work with a
single murce file or a code that has been
split up for UIM with utilities such se
make/nmake, SCCS or RCS, etc.

4. SUMMARY
The title of this paper could very well have
been “Merjoce! Inter/acel Inler/ace?’ since
that is the key to the complaints users are mak-
ing shout debuggem. The current interfaces are
fine for someone who is familiar with the detaib
of colnputer architecture, compiler internab,
and maybe an wembler language, but they
mkiei the mark for usem who know only the
high-level language in which they program.
When users need ~ use a debugger, they
already have one problem; this does not need to
be compounded by an intractable debugging
tool, Moreover, since the user w not likely to be
the author of the code (more likely the user is a
consultant or gomeone who borrowed or inher-
ited the code) the debugger should not rmquire
the u~r to be familiw with the code, but rather
the debugger should lead them through the
c[xie, Debugger use can be greatly simplified by
ofhring:

. (irnphirs sa an aid m visualizing cock=struc-
ture

● (;r;qdlics as an mid to visualizing dat~ strur-
turrs.

● (;r:lphirs IM WI ;~id k) virm:dizing Ilow ()(rxf*-

rulmn (stiwk tr:wrlmcks).

● (;r:lphkw 11.9m :lid h) Visuldizing rrlntiolls
hrLWPrII sta~ic duln Wgloli!! nn(l sulmmlm

●

●

●

●

●

●

Poinkand-click installation of tracing
features such as breakpoint, printpoints,
and watchpoints.

Poinband-click accesa b the murce code,

Poinband-click access to the local and glm
bal data structures,

Consistent use of symbob,

Native language syntax.

Editor, compiler, and loader interfaces
within the debugger.

lastly, the typical user environment of time
limits, memory limib, multitasking require-
ments, and software development utilities must
be kept in mind when designing the debugger

In eking, there is one final user comment to be
heard: “’The battle for better debuggers WU not
be over until gou aee uaera defending their
favorite debugger with the same fervor aa they
dejend their javorite machine, their favorite
edilor, or their favorite GUI.”

(’[XIP

,, I

A USER PERSPECTIVE OF
DEBUGGING ON

SUPERCOMPUTERS

J*WY A. Kuho

National Center for Atmmpherk Ramrch
Sdendflc Computing Dlvidon

USER DEBUGGING
TECHNIQUES

WRITE (*, *) ‘ENTERING SUBI’

WRITE (*, *) A, B, (X (I), 1= 1, N)

WRITE (*, *) ‘EXITING SUBI’

‘~
OTHER TOOLS USED

●

●

●

●

lint

flint (IPT)

compiler

profiler

,., ,
,1 * !,, .,.

,,
J, ,, ‘:, : “,. “! ..

:,,, ,,
‘ %,’.’‘, ,,,)b ~“,(f. ,- ..,’ .,;, , ‘, ! . . .*01

.,, !.$ c’
+.,,, ,4

\-
1.GgRRE?@:=.ws--,. ..

,1

USER COMPLAINTS

mmdt

Inawhent

Primdve

Incomplete

*’t Fit

{

INTERFACE PROBLEMS

●

●

●

●

●

Learning Curve

User Frustrated

Long Intervals Between Uses

Complexity of Debugger

Unfamiliar With Code

c=tuitiv~INTERFACE SUGGESTIONS

I ● X Window Graphics Intmfacc

● Detailed online Mp

● “Print l%int”

● “Wutch %int”

● Conditionals on
- Bruk Point
- Print P(~int
- Wtiwh Point

● [nscd] Witti Cltrk (m Menu & SOUWC Window

● “Fixplui.” FWurc for Emors

“n%’Y-T:= —

:IUiPHICS/APPEAIUNCE PROBLEMS

“ User O&n Not Familhr With Code

● Many Debuggcm U= DBX Interface
With Buttons For Typing Short Cuts

GRAPHICS SUGGESTIONS
● Represent Calllng Trm With A Flow Chart Graphic

I R

I D I/In I

I F’1
I

I (; I I 1

M[)WE

GRAPHICS SUGGESTIONS
● Show Traccbaek On CalUng Tree

I D LIB 1

“A

GRAPHICS SUGGESTIONS
● Memory Map Graphic

IK 4

GRAPHICS SUGGESTIONS

* Allow Source Acces Via Point (Hick on Call Tree

● Allow Point Click Access To Data Structures

VISUALIZING DATA

● Line i;rmptk,

“ MIJM-LIM Graph8

“ Conl wr P’M9

● Scatter Plot9

● Histqrams

/, f!

● Full Support For AU LanguagdCompi)ers

● Ability To Examine Data S@ucture with
lIi@Level Language Syntax

● cod8tency ofsymbols

LANGUAGES AND SYMBOLS

COMPLETE ENVIRONMENTS

● Source Editor (vi, em-other)

“ Ccw4~,piler& Loader

● ‘-uhnp~ml~” Bw,On

“ Syntax& Type Checkers

USER ENVIRONMENT

● Time Limits
- No optimization Runs TOOSlow

- Codes Run Long

● suggestions
- .Source Level Debugging Must Be

Provided hr Fdy @thnized Codes

. As Much Information As Possible Must
Be Extracted From A Core Dump
WWmut Recompiling and Re-running

/’

USER ENVIRONMENT

● Memory Limits
. Jotts With Large Memory Requirements

Cannot Be Run Interactively On
Most Machines

● Suggestion
. Develop A Segmenting/Paging

Mechanism To Reduce The physical
Memory Reqdrement

User Environment
● Multitmkhg

g O&l Required
- Time Ratrictions
- Memory Restrkdom

● Suggesdom
● Provide Support For Debugging Live

Multimked Jobs

● A~mApttd&reuewu# A Mukitaskl Job

9
Undnl - Thinking

U9er9Will Find Intd ve

● Visualization TOOISWithin lkb~r
- Mark Acthw Routines
- Display TaskaAttaching To PrmISMM

TOOLS

● One Debugger Rqulred Use of “Make” With
A Specific Stsmcture

“ One Debugger Didn’t !luppmt The Compiler’s
File Include ~eature

● Suggestions

- Debugger Should Work With Tools, but
Not Reqdre Their Use

. Debugger Should Support ~ Compiler
Features

~~~lum--A~~

,,,



(

SUMMARY

● hltcrke! Interface! Interface!

“ “The Battle For Better Debuggers Will Not
Be Over Until Ycu See Usem Defending Their
Favork llebu~r With ‘IIMSame Fervor
As They Defend Thdr Favorite Mdne
Their Favorite Editor, or Their Favorite GUL”



bdb: VendorUpdatefor 1992
Benjamin Young, Qay Computer Corporation

Abstmct

Mb is a new source lCVC1debugger being developed by Cray Computer
Corporation. Work has been undcmvay since May, 1990 and it was first
released to a customer in October of 1991.

To accomplish our design goals and to simplify implementation, wc chose a
library approach to the debugger design, We split debugger functionality into
several diflcrcnt areas (many of which were common areas for other tools). For
each ma we designated a new library to bc written or used existing libraries
from other sources where possible.

The end result wf this design technique is a very modular debugger which has
been or can be extended to multi-tasking debugging, distributed debugging,
process monitoring, symbol table debugghg, dump debugging, and many
Other useful tools.

This update to information presentedatSD’91
capabilities of Mb and will then highlight new
currently being added to Mb.

will first rwicw standard
functionality tha[ has been or is

—-.— ...— ———. . — ,—-—— . . ..--.-. .— ----- -...-——–——--

Cq Camputa corp4uatbon 1

‘1



Standard Mb Capabllttl.. Mb

Standard Mb capabilities

bdb is a source level C and Fortmn debugger designed and developed by Cray
Computer Corporation. As with any debugger, bdb comes with its own set of
standard features. Thcw include:

Ability to debug multiple independent processes.

Ability to debug live multi-thmaded (tnulti/macro tasked) processes.

Ability to attach to and debug pm-existing processes.

Full symbolic capability for Fortran and C.

Conditional bmak@nt capabdity.

$tanciatd high level debugging capabilities (e.g.: source line stepping,
symbolic access and display, call command).

Good low level debugging capabilities (e.g.: extensive dump support, full
register access, single machine instruction stepping).

Multiple user ktcrfaces available including line mode, Athena Widgets
window mode and OSF/Motif window mode.

Ability to debug core files.

Full on-line help facilities.

Much of the emphasis to date in bdb has been in the area of process control
and symbolics. It was decided very early on in the bdb design process that
flexible prwcss control was key to multi-threaded and distributed debugging.
Good symbolic handling was also recognized as tremendously important to
any debugger design. We felt that most user frustration with supercomputer
debuggers could be traced to either the inability to debug certain types of
processes or the inability to fully sup~ the symbolics of the programming
language being debugged.

Tlis emphasis is rcflectai in the work performed during this past year on bdb.
Ncw fcaturvs currently being added include:

● Ability to debug piped processes (a first step into distributed debugging).

IS Ability to debug simulated processes (including the operating system).

● Initial implementation of C native language expression evaluation,

● Full signal control including the ability to have bdb “register” signals to bc
ignored or to “register” a signal handJ,er for the process being debugged.

● integration of stb (symbol table browser) into the windowed versions of
bdb.

● integration of datarmwh (~ generic “data to symbolic” overlay utility) into

uI1 versions of bdb.

—....——..- . —-.-.—...—.———.. ...—..---—-..—-----—.- --- ..—-.—-...-.——- -——- ... . . . ..-—

(hy Compula Corpotmblnl 2



anaard Mb capabliltloo Mb

FiguI’9 1 Mb OSFllK)TIF Wlndow8 - Debugging ● muitHaskod Fortmn Program

~’-’’’--’’=-’’””
-MS
o: Ithbyls)wboll%out
1: /f/bby/mJltl/a, out

Ei!i!lriEIEiEIEmiEmilEiEIEmI!izi-

itnt ff *
print %othsr
start /f/bby/mul tl/a. out

i
f

stwcucf~rrothsr (

;%JTI ~2

slqnsdInt ●II3
slgnd tnt %4
sI* Int ‘hY
slQrrsdint “M
urrs!wWchar CIO.CYI

d
:

}
Q

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
42
0
0

~wt
Irm mass MM m
Imf Wcm stOs@
I?H2 tur~rscoss mrmlm
t??S4Prscas Stwsd

All of the aforementioned Itcw features exist in the current version of bdb with
the exceptions of stb and datamash. Both @b and datamash have been
me.atcd as stand alone producis (as proof of concept) and work is currently in
progress to integrate thcrn into the debugger.

The rest of this paper describes each of the new features in greater dctuil as
WCIIas outlining future directions for bdb in the coming year.

—......-— -––.. .. .—----- ._-_——. ... .. .. .. .. .... ... . ---- .— ..——.----- . . .- —---..

c%qco4Tt@asC4rpomlkm 3



Dobugglng Ppod PrQcouoo bdb

Debugging Pip8d Prommss

We decided that the first step to take in distributed debugging was to be able to
debug distributed processes that exist on the same machine. This led us to the
notion that the debugger should be able to mcogni~ a command line that
included piping from one process to another.

Flgum 2 Dobugglngplpod pf~ lnwlndowmodo

Qw-----(c””

sf~ Int

1111111 I

srrav 2 2 0 0., S - 3003011023033M
$l~d In! orrw2 2 1 0,,5 - YJ630?100202110
sigd Int arrav2 2 1 O.,S - 3123131!4 315316
gi~d lnt *frsv2 2 1 0..8 - MON9 m 221122
S4QWlnt wrsv 2 Z 4 0..5 - 334m m 32?120

——. —
stwd fnt woe- !

-

-Uu
11W4Cumnt_Prcaw Stooou

7

E u

--~
~w

CurrceLhc4w wood

EElEiElEiiIl12EaGiJElEaEEEilEElEiiia

g!j!h;:hdloc(o):.;
rf . 2.11

t

‘Whrma user starts a set of pipe-d processes, bdb creates all pipes and processes

needed and then gives the user control. In window mode, a scpuratccode
window is provided for each proccs.i.

,,. .. ... . .. . . . --—-. .———---—--—--.—----.——-—.-—”-—----—-—-—-__,.._._,.,.-..—.—,...—.-..—.- .-——.. ..———.-.-
Cuy Ca2tputu Ca2pomulm 4

1, /,



Debugging simuiat.d procoss68

Our instruction level simulators (sire and sim3) are our main debugging tools
for the operating system. sim and sim3 have the ability to simulate the CIUY-
2 and CRAY-3 hardware, respectively, but lack the symbolic support found in
Mb. Mb has the symbolic support but lacks the ability to simulate hardware.
With a few minor changes to our process control library and to our simulators,
Mb isnow able to debug simulated processes at a source level.

The advantages of being able to debug simulated processes include being able
to debug the operating system at source level and the ability to debug CRAY-3
proccsscs on a CRAY-2.

Flgum 3 Dsbugglng @mu&t@pmassos Inwlrtdowrnodc

~-’—---
~uu
D: /f/tool s/usr/bln/91m

=EEIHEIEEEIEIICEI EIE

Tll

-

. ...-.

Cmv Co#tl@u Cotpomkbn 5

,’1



C natlv. tanguago●xpwulon .valuatbn Mb

To the user, debugging a simulated process looks just like debugging a real
process except the process runs a bit slower. All debugger commands (with a
few notable exceptions) that can be used with a real process am available for
use with simulated processes. In fact, in most cases, the debugger doesn’t
know the difference between a simulated or real process.

The modular design of bdb made adding this feature rather simple. Since all
process references made by the debugger (including all memory and register
references) are made through a libnuy, the key changes needed were to the
library itself, not to Mb. By adding the ability to reference (read and write) a
simulated process memory and register set to the library, 95% of bdb’s
capabilities were then available for use in debugging simulated processes. The
main change to bdb itself was the addition of a single new command (called
sire) that caused the debuggm to start a user specified simuiator instead of the
binary noted on the bdb sim command line.

,4bout the only commands that a user can’t use with a simulated process are the
new Mb signal control commands. This is due to a deficiency in the simulators
used (which at this point in time do not SI non simulating signals for user
process simulation).

C rmtivo Ianguago ●xproaslon wahmtlon . —.

Our first attempt at native language expression evaluation was added to bdb.
Currently we limited it to the C language and will add Fortran in the near
future Native language expression evaluation allows users to print the value of
arbitrary expressions in the programming language being debugged. This is
especially useful in window mode where users can mouse off a line of C code
and hit the print button to have the value of a line displayed.

Slgnd suppqt ——. — — . . . ——

Untii just recently, a deficiency in bdb support was in the area of signals. Whh
the ncw signal suppcnt in bdb users are able to .sdcctively catch or uncatch
signals, send signaIs, clear pending signals, and register signal handlers for the

debugged process.

.. —-. . . .+. .– .. ...-..------- —. ..-,.

Cray timputu Cacpotatlam 6

‘If)



S!gnalsllpport bdb

-. -. -. I

“1’” ‘7EslE!=ll

IsICILL I

I

Shuur
Sxctna I

Djlo

t I I

llvo new windows were created to make signal control easier for the end user.
The first window (on the left in Figure 4) controls which signals will be caught
by the debugger and also provides the user an easy way to select and send a
signal to a process. If any signals arc pending for the process, they appear in
the pending list.

To catch a signal, the user clicks on the bQx next to the desired signal in the
Catch signals window and a check mark appears in the box, To “unctuch” a
signal the user again clicks on the box and thecheck mark is clcarcd to indicate
the signal is no Iongcr being caught. To send a signal to a process, the user
selects the signal to send from the Send signal list and then hits the Send Signal
button. To clear a pending signal, the user selects a signal from the pending list

and then hits the Clear Signal button.

When the user selects any signal for either the Catch signals window, the Send
signals list, or the Pending signal mask list, a help message appears in the
window which gives a brief explanation of the signal sclcctcd.

The second window (on the right in Figure 4) is the signal register window
through which users can register signals to be ignored by their process or rim
register a signal handler for their process.

.. . .. —.- .- . ..-—

CrwCalllpuw cQrpO?8kWl 7



SymbolTabbBmwor Mb

Symbol Table Browser

The symbol table browser (stb) is a stand alone utility that is currently being
integrated into Mb. The purpose of stb is to allow users to easily browse
through symbol tables getting information about program modules, program
variables, type definitions, sowc code line positions, and scow definitions.

F@umS * windows

I @s _glmvh*

~ In Nmbymwuh.om

10: CLOOAL

I
1: DEC~
2: SAW
3: Iccc
4:mEM

@@dulo nsmu: SOLH
Tsblo version: 1
Lsnugago: Fortron
Typo : ;$)E
W or S*OIS:
U of Scopos: o
II of Typos: 12
# Of Flolds: o
L{no nwrb. r: NULL
SOU?CO Dath: Iflbbylnwl tl/solvo, f ‘ I

~ tmS:OOLWS

1;0 (1, .t]

): IfUl

- b S:!SOLVE

6: Llno 23
7: Lino 68
8: Llno 2@
9: L?no 44
10: Lln@ 57
ll:i.lno 66
12: Llno 33
13: Llnm 3h

1?-

7: XRTiGCR

9: RCA1 [1..1) 1
10: NIJLL
ll:REAL (1.,11 II

l12:fFEA1. [1..11 IL
i ‘-” —-—===
htfwwmti

By integrating sth into bdb, the user not only gets the symlwl UMC browsing
Ciqmhilitl(?fi I’)ut ill S(J gets ii more inmitivc way of selecting progriumvilrillblcs (Jr

clayCort!@uWt Ckwputmtkla 8



datat’naoh Mb

type definitions for use in other areas of Mb (such as variable display or type
overlays of data).

datamash

datamash(like stls)is a stand alone utility that is currently being integrated
along with stb into Mb. datamaah provides the user with the ability to easily
overlay any type definition (from any symbol table fik) over any set of data.
Currently, data is found in fzies, although, once datanmahis fully integrated
into Mb, datawill come from both files and processes.

Flmm 6 -mmh

tiooiJimoim)oooiz7Y
00000allm40w04aJa4t
Woammowoooowowm
Momolmomooomow

. . . . . . . .
,,, . . . . .
.,, ,., 0,
,,, .,,.,
... ..!,-
,,,,.!, c
,. ...,,,
.. . .. ...
-z-c-a-d
,., ,, .,.
worm
y&zz

,., ,.. !

Sthaot:
.. !..,,,

,., ,,, ,,

,,68 ..4,
,., ,., .,
!, ...,..

—.

otrwt OMU Wrd O Oft O ( —
- 163
- 1!9?1’J
- l?WS
m 8t27
- 44$H
-M
-o
-1

——- .--.— .—— —..

ddmnash wag initially created to help in systemdutnp debugging. Its
usefulnesshas since been discovered in all kinds of tile nnddata dchugging.

9



Futur. Work Mb

The integration of datamash will bc the firststep in breaking the common link

in debuggers betwcm a process and its associated symbol tables. With
datamash,any symbol table can be overlaid on any processor file data. We
believe the benefits uf this split will become more apparent in the area of
disrnbutcd debugging whets users may need to use the symbolics of one
process in a distributed grouy to help view the daia of another process in the
same group.

The merger ot Mb anddatmnmthwill provide more benefits than just a
supersct of Mb and datamaab mmmands. As mentioned earlier, datamash
will now have access to process data as well as file data. Also, by taking
advantage of Mb’s callback loop, datamauh will bc able to provide a real time
data and symbolic display of a process while it runs.

Integmtion of datamash, stb, and Mb provides a single main challenge, that
being in the usm interface areaof Mb. One of the things wc try to avoid in bdb
(andin all of our tools) 1san explosion of windows. At the present time we are
m-examining the cumnt Mh interface to see how we can better present to the
user all the different capabilities Mb will have to offer without ovewhehning
the user with a large set of default windows that the user must display.

Work for the short term in Mb will continue in the areas of user interface,

graphical data visualization, process simulation, watchpoints, and nativ q
language expression cvaluaacm,

The user interface may go through a major overhaul with the merging of stb

and datamaahinto bdb. This shouldbe a relatively painless exctvise given the
split between Mb and its user interface. The :.db user interface is written
entirely in Tcl (TooI command language de~eloped by JohnOusterhout from
the University of California at Berkeley} making the interface changes simply

a matter of rewriting the Tcl code. None of the core code of bdb will be
afhctcd by this change.

Also being added in the near future to the list of bdb interface options is an
OPEN LOOK window rnodc,

Finishing toucheswe currently being put onto a setof routines tha[ will
provide bdb with its first dive into the world of graphical data visualization.

In the area of pmccss simulation, wc have had user requestsfor the ttbility to
switch a pmtess from real 10simulated imd hack again, Wc are currently

. .

Ctq Chnpuba Corpcumdon 10

f,ll



investigating this possible functionality. We are also looking into the ability to
debug a vrn (virtual machine) process. n processes are very similar in nature
to simulated processes but run at machine speed. ‘lb main disadvantage of a
vm process over a simulated process is the lack of any debugging capability in
vm. By adding the ability in bdb godebug vm processes, one would gain this
debugging capability.

WatchPoints are anor.iwrdeficiency in Mb. Currently Mb does not support the

idea of a watchpoint. Our main concern with watchpoints is the performance
overhead one pays to have them. We are current.ly looking into the fast
watchpoint scheme used in Idb fromLosAlamos.

Native language expression evaluation is another area in Mb that needs more
work. Fortran expression evaluation will be added and the C expression
evaluation will be extended to cover the ability to use functions or subroutines
in expressions.

—----...—.A—. .-_. -_-. —_— —-. .._. — ——-— .. — ----------------- ..-.. -—— .—--—-— —— —--—- ---------- .—— ~-,
—.. -

chy CampwluCarp4wmtlon 11



AcknowWgmonta Mb

Acknowledgments

The author wishes to acknowledge the help of a number of individuals at Cray
Computer Ccnporation without whom Mb would still be an idea on my white
board. These include Scott Boltc, Randy Murrish, and Tom Engcl.

A special thanks also goes to John Oustcrhout from the University of
California at Bcrkclcy, tltc developer of Td, upon which the low lCVC1bdb
interface is based.

Benjamin Young, “bdb: A library *nproach to writing a ncw debugger;’
Procccdings of the Supcrcomputcr Debugging Workshop ‘91, Albuquerque,
New Mexico, November 14-16, 1991.

John Oustcrhout, “Tc1: An Embcddable Command Language,” Proceedings of
the Wlntcr 1990 USENIX Conference, Washington, D.C., January 22-26,
1990. (1990A)

Information about Tool Command Language, along with the latest source code,
may be obtained from John Oustcrhout, University of California at Berkeley. A
mailing list exists which is devoted to Tcl questions. To join, mail a request to
&cLmuues@sprite.berkdey,edu and ask to be included on the dishibution.

Copyrights ——

stb and bdb arc trademarks of Cray Computer Corporation,

OSF/Motif is a trademark of the open Software Foundation, Inc.

OPEN LOOK is a rcgistcrcd trademark of USL in the United States and other
counmcs.

Tool Command Language (Tclj was developed by Prof. JohnOustcrhoutof the
University of California at Bcrkclcy.

Author Inforrndon..—— — —. .-——.-— ....—-

The author can be contacted by mail at Cray Computer Corporation, 1110
Bayfield Drive, Colorado Springs, CO, 8090ti or by e-mail at
bhy@cruyco.r .com.

. .. ..--—.-..-——-------- ..-.

Cray complltof Cofpwdoll 12



Thinking Machines Vendor Update

Rich Title

October 1992

1, \



Recap from last year’s talk

Prism 1,0 was about to be released

Debugging and performance analysis for
our data-parallel languages (FORTRAN 90, C*)

dbx-like capabilities with a graphical interface
●

OSF/Motif based (slide)

FORTRAN 90 expression interpretation

Data visualization capabilities for arrays

Performance histograms at the source-line level

●



:..m

I
.

ml i --tart
● =o
9(1.:) = C1:321
~10J=~32

4(J.:J = ●(J-1. :>*32
10 e91twn9

t-iiz-l

~.. . ..-.L*.. . ..-[;}q * -Intah-rwta-xxo

.

2 3 4 7

●(1.:) - S(l. :)=rl:xxl 1+3.4x
610 J= &32

●{J.:] ● ●{J-1.:~*{0.3X.OJ ❑ 17.2 X

10 cmla-

b(l. :} = {1.0.0.0) !0.3 x

b(l.:) - b(l.:)=Zi:3Xl 10.4 x

&20 J= 2.32

b(J-:) ● b~J-1.$)*{32.0.0.0) 017.1 X

20 C9uiw
● =a. b 10.2 x .,

II

Thinking Machines Cori)oc-ation ~



Activities in the pJ year

Relca~es:

- Prism 1.1 was released in summer 1992

- Prism 1.2 is about to be released

What’s in these releases:

- Bug-fixes

- Rounding out functionality

- Fine-tuning of user interface

- Some new features (next few slides)



Extensions to array visualization

- Vector representations of complex numbers

(slide)

- Graph representation for 1-dimensional arrays

(slide)
●

- Surface representation for 2-dimensional arrays

(slide)

●



:/’

U-’ &f-

W@ w wbf

b#-

e-





—.

I
ad

E--

I
Tl]inking Macl]incs Coq)ornfiol~”



Ii!iil
&n- ——.



Structure Visualization

- Follows pointers to show arbitrary

gr~phical data structures

- Automatic layout

Zoom in/out for different levels of detail

(slides)



..................................................-..——.--...—.....-. ..-.—.—=----------m$ ‘oom E
...............-...........”.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..” —-- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

draw = ‘0x49012e
left_x = O
top_y = o
total_h = 364

total_w = 1072
A n_h = 400
di n_w = 1078
zoom =4
din = 6291Q72

gc = OX41F64S
font = Ox438ee0
root = CJx4a6230
current = 0x4a6230
nodes = 0x4a6250



,.. .................................................. ... ...... ............................. ............... .......................-.”..”.... ......w............."....-....-.".-.ti............,.... .,....,m H$zo-.m E
to~idget = ox4b02fe
draw = OX490128
left_x = o
top_y = o

total_h = 364
total_w = 1072
wi n_h = 400

= 10?’8
=4

6291872
gc ‘ Ox41f648
font ❑ Ox438ee0
root = Ox4a6230
current = Ox4a6230
n~des = 0x4a6250



........................................................

'=-----"""1"""""""""":`""~:o
topwidget = 0x4b02f8
draw = Ox490120 H
left_x = O
top_y = o
total_h = 364
total_w = 1072
win_h = 400
wi n_w = 1078
zoom =4
win = 6291872
gc = OX41F648
font = 0x438ee0
root = 0x4a6230
current = Ox4a6230
nodes = Ox4a6250 I

‘id = 6291680
Iirection = O
]in_char_or_byte2 = O
~ax_char_or_byte2 = 127

lin_bytel = O
~ax_bytel = O
~ll_chars_exist = 1
~efault_char = O
l_properties = 21
]roperties = Ox438f38 c
~in_bounds = {

lbearing = O
rbearing = O
width = 8
ascent = -1
descent = -6
attributes = O

1
max_bounds = [

lbearing = 3
rbcaring = 8
width = 8
ascent = 10



-. ..-.._... . . . .. ._-_. ____— ______. .—

‘] ❑ + zoom -

.— —-.--—-.——.—
FileOptions E!

.

on
+ Iirocessors = 0x4a1260

= 361
= 87

1!
= 587
= 153

arent = Ox4a6230
-hildren = Ox49e550\

r

nme = OX15FO08 “data_loop’*
Id =2
line = 100
parent = Ox29F9d8

I

I
rime = Ox15ef F8 “main”
Ld=o
line = 13
parent = Oxo +I

●ngth = 1
)adbits = 28
Iits = f

14

\

node = Ox4a8630 ❑
line = 100
next = Ox49e4d8~

F

II

I

I



.... . .................................................................................................. ...................... ...................... ........

= rl :200. E

Ii



Assembly-language support

- Split window source/assembler (slide)

- Shows correspondence

- Assembler window acts like a source window

(can set breakpoints, etc)

●



~lk _@ecuts Qebug ~erformence &snts !#lIltles D~c

=lEEiElEmiiEHEiEEgEi2mj’E
Optestzx WULJS: etomed

10

11
12

1~.

14

15B

16
.—
——

B

. .

double cunplex dzl. dz2. dz3
character*10 c
11 = false.
12 = ●true,
13 = 11 ●nd. 12
Ll=o
F1 = 0.0
di = 0.0
21 = (0.0, 0.0)
dzl ■ (0.0, 0.0)
c = “abcdefghlhj”
do 20 j = 1,10

12 = ~1+1
F2 = fl + 1.0

22CC at X1O, [%17 + -37921
22d0 mow -1, X1O
22d4 st 210. [%17 + -3eool
:;:: mow o. %10

St Xlo, [%17 ● -3eoel
:;:: mow 0. %10

St X1O. [%17 ● -3e161
~;:~ ld [X17 + -3eeel. xfo

Sc xf& CX17 ● -3e401
22fo 1dd
22f4

[X17 ● -39441. Xfo
std XfO. [X17 + -3e961

22F0 1 dd
22FC

[X17 + -39S21. XfO
sethl Xh~(Ox44000). X1O

;::; std Xfo. CXlo ● 1941
1dd [X17 + -40eol. Xfo

ttoppod in procmdure “MHIN” ●t line 11 in Fllc “optaat2.f~”
9
gtopped in pracmdurm “MQIN” at llw 12 In file “optest2.fcm”
B
stopped in procedure “FIWN” ●t liw 13 in File “oftestti.f~”
print ~1
11 =0
~here
~ftItlo. lin~ 13 in “rw+test2.Fcm”
nalno at 0xlad34
D4T5_ScalarMaino at 0xlaef8
(2) stop at “optest2,fcm’’:l3
(3) stop ‘t CJX22F4

.



Support for preprocessed source

- Support automatic F77->CMF translation

- Split window F77/CMF

- Shows correspondence

- Either window can act as sourcewindow

(set breakpoints, print variables by pointing, etc)



~iie _%aJte Qebug &formance Eyents Qtiiities D~c ~ei

‘-rlnnnmr~mmi~lmRun continue interrupt Step Next Print

~ogram: flo07 Status: stopped

;ource File: lusers!cmsg~hltiemwlm~l.fcm

{

.Ine

371
372
373
374
375
376
377
;;;Ba

3eo
3el
382

‘3

&

374
375
376
377
378B-
370 -
370 -
:;: ●

379
380
301

382
303

.—
—.
~
>rint p
)po =
:6:,0.0)
:4:.0,0)
:0:,0.0)
‘12:.0.0)
:16:,0,0)
:20:.0,0)
24:.0.0)
,0:,1.0)
d:. 1.0)
8:,1,0)
12:.1,0)
16:. 1.0)
,’O :.1,0)

*&@** ***e* ***** *n***m w*#*u** *********e************* *****************

Turn vectorlzation back cm For the rest.

INITIWIZE 04 RRRRYS
ppo = 0.
Zwo = o.
Zwlo = 0.

●
zwrO = 0.

pi = 0.
Zwl = o. 1
Zwll = o.

Turn vectorlzation back on for the rest.

INITIRLIZE CMflRRRYS
do 1000, k=O,kem

do 1000. J=O.Jem
do 1000. i=O.Iem

ppO(l,J,k)=~,
do 1000. h=l.5

zwO(h,L,J,k)=O,
zwiO(h.l,J,k)=o.
zwrO(h.1.J.k)~O.

1000 continu~

do 1001. k=O,kel

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
().(300000
0,000000
t),~J~(lo(io”
II. !1(:1(10(]()

0,000000
0,000000
0.000000
0.000000
0,000000
0.006000
0.000000
0.000000
0.000000
0,000000
0.000000
0,oooooo
O,(IOOOC)O

0.030000
0,000000
0,000000
0,000000
0.000000
O,ooooco
0,000000
0,000000
(),()()()0()()
0.000111)0
(),(,)()()”(-)()
0.000000
(1.000000

0,000000
0,000000
0,000000
U.000ooo
0,000000
0,000000

0,000000
(JOooflooo
o,ooo~~oo
0.00000!’)
0,I)LIOOO()
1).1:11)111.)ofq



Future directions
●

- Remote debugging.

“ N&’%3Jxs. ‘lMD
(message-passing) program-

- Software watchpoint technology

(more efficient watchpoints and conditional breaks)

-#r
more distributed internal implementation of

ismo



Release 6.1

~ Support for multitasked codes.

d SCC 3.0 and CFTW 5.() Compiler release support

~ hzvoke command
data.

- execute user program to process

~ reifiit command -

2 switch command

P

reinitialize symbol tables

- changes debugging images



Multitasked Codes

~ Supports both autotasked and macrotasked codes

~ Allows switching between tasks and logical CPUS

~ TASK command:

I[3] stopped in mtagk$c. subtask2 at line 43
4 3=> geirb = (2 * i) -j;

Current tasSc has id 3 running on logical cpu 95531.

(Cdbx) task

Internal
~~sk id User defined task value Task status
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ____ ____

-> 3 000000000000000000000C2 running on logical cpu 95531

[stapped in subtask2 at line 43 in file mtask. c)

2 00000000000000000000001 running cm logical cpu 95530

(stopped in subtaskl at Opl1446d)

1 00000000000000000000000 waiting for task 2

n



t--l cdbx DebuggerI—’
Multitasked Codes

~ CPU command:

I
(Cdbx) cpu

->

( Cdbx )

Cpu id

----- -

90474

95531

95530

Active/ If ms.nning,

Inatiive Internal User defined

task id task value
----- —---- ----- ----- ----- ----- ----- ----- -----

Inactive

Act ive 3 00000000000000000000002

(stopped in subtask2 at line 43 in file mtask. c)

Act ive 2 00000000000000000000001
(stopped in subtaskl at 0pl1446d)



x Debugger~~’

p;9~ Cray Research, Inc.

Release 7.O/7.C

~ Type casting when printing variables

~ Hardware watdqmint feature and other
support

~ A ‘fuzzy match’ symbol lookup option

C90

~ Xwindows drag-and-drop support with other
VTOOIS

2 ‘printf’ Xwindows menu button

z Improved internal interprocess communications
(stdout properly output)

&-

L

0
-J’’., JP

J



‘cdbx I)ebuggerl__\

1 ‘1‘?0592 Gay Research, Inc.
& //-JJ/~

-J

L u
Release 8.0

d Unbundled/ binary release with other VTOOIS

~ Support for CF77 6.0, SCC 4.0 compiler releases

~ Support for new C++ compiler including name
demangling

~ Support for new FORTRAN 90 compiler

~ Faster conditional breakpoints

~ MPP Emulator support

~ CDBX quick reference card

~ Many other fixes/improvements

;3 ~<Ilff)r ~,,b i



54MJW





a?
Jby



- “b bwd c-m-d ‘“”awe



m OTC

F ~0

[

%)dwwm’ Lb/-m t

Uvlf$ puc$> /rode Zebux)%
Do& qpvt



Scctionl UDEE3SlC~

UDB: A Parallel Debugger for the KSR1

Steven A. Zimmerman
Kendall Square Research
Waltham, Massachusetts

September 28,1992

Abstract

LW)B is it pariillel debugger developed at Kendall .&pare Research m run m the I(.SRI.

1[s command set is in general a supemt of those of (;DB and dbx, reflecting the phi-

losophy that the user is well served lJy having available the full variety of features

present in uaditional debuggers. In addition, UDB has integrmed ilito this command

set many features specifically designed for debugging parallel pn )grams. Since the

I(SR1 runs the OSF operating system, parallel programs running on the K$ltl are typ
ically written using pthreads. UL)B’S parallel debugging features are desiglmd to hr

used With this type of muhithreadex-i program, although they cm also be used with pr(~

griuns that uw.just the basic kernel threads. Breakpoints and traces may I)fi set in (me

thread, all I breads, or any combination of dveads. The user may M all thrcads vxt:-

(.ute, (w may rtxxrict executkm 10 (me or a set of threads. [)ata exprw..i{ms imty idso IN’

twiduatml in the tx)li(ext t)! iAIIy ~ivtm thread, or sequcntiidly ill all thrritds or il gr(ml)

(d’ [hrmi.s. In general, any viiii(i U[)B contmand GUI be made to twtecutc ill till’ (“i)tlt(.xt

td’ iI Kivcn thrtwl, or in the context of all thrtmds where this makes .seII.se.

1

I



reason, the L’DB debugger was developed with the goal of incorporating the bm t’eil-

tures of current state-of-the an serial debuggers, as well as a number of new ftzuurtis
specifically usefiJl for debugging pml]el ~rogt-~s. The GDB debugger was selecce(l as

having a wide variety of debugging features as well as a clean and easy-tt>use command
set, and so UDB’S user interface is based largely on C,DB’S. As the command set ()!dbx

has much in common with that of GDB, and as dbx has severzd imporult “eatures lili~
kg in GDB, most notably trace and assertion facilities, the dbx command set has also

been incorporated into UDB. By suppordng both command sets, UDB presents a user
interface that is already familiar to a very large proportion of the Unix uwm ctmmlu-

nity, as well as one that offers a full range of debugging facilities.

! ;I addition to standard GD13 and dbx facilities, UDB offers a number of new featurm

that are u~ful for general purpose debugging. For example, L~DB supports the dehlIg-
gi;lg of both C and Fortran programs. Since C is case sensitive while Fortrw is II(JI,

(JDB allows cast sensitivity to be turned on or off depending on the language of th~

object module. UDB’S signal handling mechanism has been extended so thiu signu]s

can have command lists associated with them that are executed when (he sigmd is

received, analogous to the way that breakpoint command lists are executed whc n

breakpoints are hit. Userdetined commands have been extended horn the (;DB

model so that they are allowed to take argu mencs, @ as in the dbx-st yle alias feature.

UDB has “if”and “for” commands, whose function is similar to the corresponding kev-
words in the C language. These commands are especially useful in writing command

lists, command files, and userdefined commands UDB also allows recording of either

the commands being issued in the current session, or a complete record of the emird

wmiion outpm(including commands), or both. The first facili~y is very useful for inter-

active development of command scripts. UDB also has a small command tilt: d~lmg~rr
which allows the user to step through command tiles a line at a time. Fim-dlv, L’[)1+ IMS

extended the (XJB command line editing facility to include a fairly (:(m})lete VI IIIt MItI,

although some would not consider this m be a feam. e.



.—---- ..-

Fqura1 .Smmz W’iti

1 a 3

~1-~ xals ~.cq ~a Legend
M G -CAP 13 .0s Moizto 9zel?2 1O-AU-1WZ 16:
n 1. Window number67 c ..... . . ...... . . .... . .... .. . . ..... ... .. . .... .. .. ... .. ..... . .....
M
69 ~ ~~) 2. Thread number

m m.qs,lm)% - ~TA( s .1000) 3. Source filename
72 ~ /WTh/~TA .~rA 4. Line numbers
~: w71 C-yflJ;:l%%J%(*W?l%M.U!?W”
76

5. Status cotles
77 6. Source lines

45 6

Table1 Status tides

Window Code Minting I

Source > PCof tie window’s thread, if stopped

R PC of the window’s thread, if in run state I
B Breakpoint in which the thread participates

w Synchronous breakpoint in which the thread participates I

I

;ooolobr17.-o: tl;p
1000IOA0798! flnnp
,llooloMf7fc: f1Rep
,oooloM7f#1 II-

11 :OOO1OMWJOI flwp
,Ooolobomc ! fins
:OOO1LMOS1O: II*

1Z:IIOO1OAOOICIBgliwp
11:IJOO1OMM2O: .flna?

Uoolobooas ., f Imp
I*, lwolobooJo I flwp

OooloAo#lm fIhop—

: ●owbo o tell, tllo
: cte kl!,. onlw(tell)
: ●o+aa tc12,t129
: otau12,*oM150(kll)
: lA4, r0 .OmS(&ll), Ull

: lU. rs .lldl(ict!), ?cl~
IAJ.10 Old(klz)!tclu



.- -

Tabl. 1-1 Instruction Window Status (lwles

2

Code Maaning

-> PC for the next pipelined instruction
=> PC for the second pipelined instruction

B Breakpoint in which the thread participates
w Synchronous breakpoint in which the thread participates

A program 1/0 window is also available; all the program’s input and output may be
directed LO this window instead of to the same place where LDB is running. Thtn e are
also several m-her types of windows available under U13B, but as these are all use(i spe-

cifically with parallel debugging, they are described later.

Parallel Oebugging

2.1 Managing Multiple Threads

Sinw the KSR 1 rums the ( )SF operating system, parallel programs runllill~ (N) IIW
KSR1 are typically written usil]g pthrtuds. UDEJ’S parallel del)u~ging ktturrs m-t’

designed LO be USA with this type of multithreaderl program, ah I)t)ugh thty CAII A J
be used with programs that uwjust the basic kernel threads. U1)B idelllilies ilt(livi(lll;ll

threads by bolh a barrier ID altd a thread 11) within the barrier. “I”hrtuds d]at am t)p(*r-

;Itillg Wilhill the wrial porfiotl ~)t’the prqpm itnd are d]twefhrr Ilf)t a.s~)(”iit[d with J

Ironer are Agned a barridr It) (d’ zero, sil]w harrier li[~mb~rillg I]orlmdlv stiuvs ill

t)tie, ‘lo rvn]ild the user (d”whi(.h thread is r~ment, thr I)iurier [1) LUIII [hrt!wl 11 ) ilr{’

displayed in the user prompt as follows:”

ill ‘4,1]!



“ek,, u116 J d .: - -- ---~--YY, ,

By defiult, mOSCcommand arc executed in LJM conm[ of che currcn[ &tread only.

The main exceptions co this rule are the breakpoint and m-ace commands; these apply
LOall threads by default because the user [ypically does not know ahead of rime which
[hrcad or ~reads will be of interest.llcsc commandscan be resr.rictedcoapply to [he
current chrcad only by prefacing them with d~c thread keyword. .% y comnland,
including the brea~poin[ and trace commands, can be made LO apply to a specific
thread or to a group of threadsbyprefacing [he command wi[h Lhc thread keyword

followed by a list of one or more rhreads. Finally, those commands tha[ normally applv
Lojust [he current ti~rcad can be made to apply to all threads by prefacing [hem wi[h
che keyword all. In these last two cases,commands[hat normally produce OLILpLI[ will

produce oucpuc for each chrcad specified. Tyi,ing [he Lhrcadkeyword followed by a sin-
gle thread number but without a following command causes[he current r,hread LO be
switched to the specified tircad.

22 RunningMultiple Threads

Special issuesarise when running mulLiple threads with breakpoints. One of (he mos[
crucial has10do wirh how to handle other threads when one Lhread hits a breakpoint.
UDB monitors tie child task’s exceprion porL continuously, and suspends dw child

~sk as soon as a breakpoint exccp[ion isCnCOLUIICrCd,.4c lhis point, [he into threads
command may show a number o~ threads in Lhe run state, bu[ sir,x dle task is SUS

pended, [hey are not really running, and Lhc UDB doculnentatiwl describes [hell~ M
frozen, once UDB has stopped due to a breakpoint, iL is possible m swi[cll I)elween
[Ilreads [hat are sLopped or frozen, examine ilnd change fheil” dam, do sctick Iwkuaccs

on LhCm,etc. Bydcfaul[, the continue tomlll~ncl will continue [he curren[ [l IIeml plus
Al hrcatls in the run stale, The continue command “nay lx given ail optiot]~l [tlrcml

spccifrcaLion to continue threads other dIa:l or ill mldidw] m [he curren[ d]rcm.li [vp-
illg all continue will cause all threads to contin.lc regardless of d~eir rUII SIJIC.“I-hc
exception co this is ha[ individual rhrr;lds may be preven~etl from execu[ing I)y qm i

fying their names in a hold command; held rhreads nevel execute Ull(il AIIL’1”IIIL? III c

freed by means ofa tree command. I.Ioth slopped aIld frozen dlrewls IIIJV IJCIlt’hl.

‘1
,,,,



23

from running co SCOpped, Sllspellding [he entil”c 1A avoids dme problems, aIId allow

brcalipoints to be handle ~ scqucntiallv a[ the user-s option, When some d~reads have

hit a breakpoint and it i!i no longer inceres[i[lg LO watch other threads hit dle same

breakpoint, Lhe user can disable the breakpoint in [he other threads or in all (breads,
and continue execution.

Single stepping in a multi threaded program works somewhat differently in UDB Lhan
just continuing Lhreads. When a thread isbeing single stepped, the user Lypicallywants

LOstudy Lhe execution of just that [hrcad. If frozen threads are also allowed to run, as

wi[h tic cent inue command, then they may make asynchronous changes to dara of
interest, or worse, one of them may hit a breakpoint during die stepping operation. To
avoid these problems, only the sLepped thread or threads arc allowed LOexecuLe clur-

ing Lhe smpping operation.

SynchronousBreakpoints

Normally, a break~int suspends Lhe entire hsk as soon as any rhread hirs it. When
dealing wid’r parallel programs, often the opposite behavior is desired, ChaLis to say,the
user would Iikc the program LOstop only after ail Lhrcads belonging LOa given barrier
hit a spec;fic breakpoint. To handle this case, synchronous breakpoint have been
introduced. Whenever a Mead hits a synchronous breakpoint, iL stops, buL if ocher
rhreads belonging 1:0the barrier are still running, execution of the program continues.
Only when all threads in he barrier have sLopped aLrhe breakpoint does UDB suspend
tie task and return control to the user. An exception LOhis case is if some of the

threads SLOpat IH.s breakpoiru and then anorher thread hiu a regular breakpoint; in
Lhis ca5e, tie program will sLop immediately. lf Lhe Lhrcad COn[ainiflg L)M rCgUkK
brcakpoinL is res’Jmed, and no OLher regular breakpoint arc encountered, the pro
gram will r.hen continue until the synchronous breakpoint is hiL in all Lhremls.

[f a synchronous; breakpoint contains a command Iisl, Lhe command lisL will be ex~-

cwed h}’ each Lhrcad A: Lhe time d~at iL firsL hits Lhe breakpoint.

2.4 Windows andMultiple Threads

In multiLhrcaded progmms, several other window f~s are JWNIJI)lC in A[lilitm I()

those described above. The first of fhc~w is known as J shwcd SOLIITewindow. IIIIS wirl -
IIow is sirnil:lr to J regular sOur[mewifldow, exrc~l [hal it (-orl[dills 1)1eakpc)irlr Jllf! 1’(.

mm kcrs for all of the program’s IhI cads. Sim:c a program nmv (x)llraill lIUII(IIXVIS (d
Lhrcads. and since t.)reakpoirlrs rna$ exist ill m[hcr some thrcwl$ or III JII rl]rcml~, 111~1

illform~li(m for these rnarkms rnusr Iw CIIIXMICIIel?i(:IcIIIlv. [;1111 IIWS rhr li)l!()\t”lll~
w’lwrnr:

... .



Figure 2-3 Slmred SOILrce\Vinilow zuiflt Status Codes

w
67 c --------- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
co su&un&~’ml(IlmlRcal
69
m REALIHMTA(3. lW)
?i REAL~TA(3.lMto)
v ~ /~TU1ObTA ,~TA,.

Table2-1 Status Codes

Window Coda Meaning
1

I

Shared Source nR PC of a frozen thread. n is the thread’s ID in a barrier.
~QR PC of several frozen threads, n is the number of threads running at that point
n> PC of a stopped thread. n is the thread’s ID in a barrier.
~*> PC of several stopped threads. n is the number of threads stopped at that point.

B Breakpoint that applies to all program threads

b Breakpoint that applies to only a subset of threads

w Synchronous breakpoint that applies to all threads in a barrier
w Synchronous breakpoint that applies to only a subset of *reads in a barrier

Note tiat this metiod allows the user LOeasily distinguish between regular brenkpoin[s

and synchronous breakpoints, which behave rarlwr-differen r.ly.

Sh~rcd instruction windows are also available in UI)B. These work similarlv [o shale(i

source windows, with some mim)r Iirnita[icms.

AII irnpxxant issue (hat nuvls 10 be addressed when using windows wi[h rnultil)le

threads is how manv winr.luws 10 use, and which Windows get clisplaved in wlli(ll

d~reads. When L’DB is star[e(i up wi[h [he defaul[ windows qxions, IL crea[es o[)t’ Icy-

ular source window, one shared scru[-ce window, and one progl aln 1/O win(iow. l}”llcrl

[he program sums execur.iyg, Lhc SOUIXXwil]dow displ~ly~[tie program’s i[lili~l [111~’11~1.
W71enever JIIV thread hits J I)rc:lkpoint IIIM cauxs pro~’arn execufion 10 SIop, II)ill

rtll rml IS displaved ill the s4)IIl (e window :U\(), if IIIC user Intillually ch~llgcs rhc ~LII

rcrlr [hlca(i IN InfiaIIs 01”Ihe +hread (olr}mwl(i, fhc IICW [h[cud is aLIIOIII,III(i Illv lli\-
ld.lved in lhc WNII(Cwill(h)w.

1! Illolc ltl;ln OIle l(!glIl;l I w) I.II{e wI[)(ltw IS (ichilc(l, Illc 11.sel (’;II1 rilhrl (1(’iIlt’ 111111111)1(’

w) IIIrv wirl(!(n~% .II $fiIIful) ~N (lc:lle fll~.rll llltll~l(l~l~ll~v Ilf ~lllv lllrl~’ ‘~~llll]!4 [ ‘)i~ “X”( 11

I



-- ”..”,. * , -t~IIut i.,muugglng

tion. When muh.iple source windows exist, the events described above Lhat cause u

thread to be displayed in a source window use the available source windows il] rotil)d

robin fashion. If the user wants one or more source windows to always display a cm-mill

thread, he can tell UDB to remove them from the list of windows available for new
thread display.

(JK)B ako allows the user to create prompt windows for use with mukithreaded pro-

~ams. These windows work exactly like the main LTDB command window, allowing the

user to execute commands and see their output. They are useful because they are cre-

ated on a per thread basi% and thereby allow the user to segregate IJDB command
streams by thread number.



UDB

A PARALLELDEBUGGERFORTHEKSR1

.

Steven A. Zimmerman
z@ksr.com



SUPERSET OF W AND D8X

Traditional serial deb~ers work well with KSR’s programmi~ model

GD8 sekcted as powerful and WI known SWM -f

DBX selected for compatibility reasons and trace and assertion faciMes

ADMTIONAL SERUL DEBUG6ER EXTENSIONS

Full support fof debu@~ Fortran programs

Command lists for signals

Arguments fir user-fined commands

New control CWWWIUs “if” ~ “for”

Command and session recording

Command file Ckbkgglng

VImode for line editing



Source, instruction, md pr~am 1/0 windows avaiiable

Markers indicate the Iocatifm of the PC and all en~led breakpoints

Witiows automatically updated to current location whenever pragram stops

UDB commands that list source files update source windows as well

Motion within a window is =cornplished by either emacs or vi commands

Frquently used UDB commands have single letter window versions

-.



;

:

5
6

;
9
10
11
12
13
:4

15
16
1?
i%
19
20
21
22
23
24
25
26
27
28
29
30

CTSC Basic test for parallel stuff - a’la’ linpack
cc ------ ------ ------ ------ ------ ------ ------ .----- ------ ------ ------ ---

paraaeter (n-16)
common } a4 a(n, n)

--- Initialization
B E= dcli=i, n
B dolj=l, n

a(itj) = 1.0
1 Ccatinue

c --- the a’la’ linpack loop - in parallel
nm~~rt-1
do 60 k ● 1, Ml

kpl-k+l
t - loo

C%KSR* TILE (j, tilesize-(j :2) )
do39j-kpl, n

do 31 i -1, n-k
a(k+i,j) = a(k+i,j) + t~a{k+i,k)

31 continue

30 continue

@HR* ~D ~~

60 continue

end ?

c ------- ------ ------- ------- --------------------- ------- ------



:0001090918: f inop
:0001090920: finop
:0001090928: fin~p
:0001090930: finop
:0001090~38: finop
:0001090940: finop
:OOOK)90948: finop
:00(31090950: finop
:0001090958: finop
:CIOO1O9O96O: finop
:OOOi090968: finop
:00010909?0: finop
:OW1O9O978: finop
:0001090980: flnop ,
:0!)01090988: finop
:0001090990: finop
:0001090998: finop
:OOO109C19aO: finop

I 7: OOO10909a8 :B ~ovi8 0xll,%i6
:OOO1O9O%O: ->Bovi8 Oxl,gi?
:OOO10fN19b8: =>mwi8 0x102ti2

a:ooolo909co:B ●OVig 0xll,ti8
:OOO1O9O9CS: Dovi8 0xi,~6
:OOO10909dIl: ●ovi8 0x10,ti3

9:OQO10909d8: faovi8 l,%fO
:0001(!90900: finop
:OO020909e8: finop
:Ooologogfo: f inop
:Ocologogfs: fi)+op
:00010$9400: f.’.nop
:OOO10$10a08: lsh8 0x7,~7,U7
:OOO109Ga10: fismp
:OOO1099a18: f inop
:Ooologoam: finop
:OOO1090a28: finop
:OOO1O9O?I3O: finop

;

;

;
.
J

;

;

:
●

}

;

;

;

:

i

i

:

i

;

;
●

J
●

B
.
J
;
;
.*
a
1

;

;

;

:

●

J

;
;

;
;

;
●
1

Sto *11,+OX170(%C13)
st8 ~12t+Ox178(~13)
st8 M29,+Ox140(tc13)
st8 ti30,+Oxi38(~c13)
SW tc14,+Ox160(~13)
stO ti12,+Ox158(X13)
Movf,8 0x180,X5
●ov8.e %clo,%cll
sadd8.ntr 0,&13,&5,&12
●ovb8.8 $cll,M30
st8 Xil\,+Oxi50(&13)
Bovb8.8 %12,ti29
st8 ti14,+Ox148(~ci3)
ld8.ro +Ox30(Xll),&10
cxnop
cxnop
sadd8.ntr O,%C31,%C1O,%C1O
st8 %i6,-oxao(%ci2)
st8 %i7,-0xeO(%12)
cxnop
st8 %i8,-0xe8(%c12)
st8 ~i6,-0xe8(&12)
cxnop
ld8.ro -Oxe8(%c12),~6
ld8.ro -OxeO(Xi2),X7
ld8.ro +Ox28(&l:),&8
movb8-8 %c6,%i7
cxnop
cxnop
movb8-8 u7,$c6
cxnop
cxnop
sadd8.ntr 0,&8,%c6,%c6
sadd8.ntr 3,%c7,%c6,%c7
st8 %fO,-0x88(%c7)



BREAKPOINTS IN MULTITHREADED CODE

Entire task is su~

Threads in the “run” state are actually frozen

All threads may be examined and manipulated

CONTINUING AND STEPPING

The “continue” cornmad works on the current thread and all frozen threads

Thread execution is affected by “hold- and “free- commands

Stepping connanas execute only specified We@s)

. . . l+: ●: nsm luti2

-..’ A RI

KENDALL SQUARE REsEARcH



E@ 2 in thread 1:0, W() at koo.f:23
23 B 31 continue
(udb[l :0]) info threads

I
# Mach ID H State NUB . Address Procedure

1> 1:0 16 1{break 2 0xi090dd0 WIN ~
1:1 18 N run Ox1090dd8 HAIN
1:2 19 N run OxM190dd8HAIN
1:3 20 H run 0x1090cid8MAIN
1:4 21 H run Ox1090dd8KAIN
1:5 22 Y break 1 OX1O9OCCOMAIN
1:6 23 H run t)ti090dd8 WIN

,(udb[l:o]) quit

File:Line
koo .f :23
koo. f:23
koo. f:23
koo.f :23
koo. f:23
koo. f:22
koo. f:23

, ‘Taiois‘“””’’””‘t ‘F’”‘y‘r ‘)

I



Breakpmnt is set by defautt in all threads af the current bmier

lash is sto~ only after all threads hi?the brealqmint

c~rnmmcl lists we executed when the thre~ actually hitS the breakpoint

Program stops in the thread from whictI “continue” was issued

..” .M~e K,a IW2 KENDALL SQUARL RF +} AH(:H



THREAD Msm
d

Parallel progr~ on the KSR1 typically use ptltfeads

UDB can debq programs that use either pthreals of kernel threads

Thread nutirs consist of a barrier ID - a thread ID

Current thread nu-r is alwaysdisplayed in the prompt, e.g., “(ucMI[4:2])”

Omerthread nanws can be listedwith“inti threads” ccmmad

SCOPE Of COMMANDS
Most commmls execute in the context of the current thread

Notable exceptions are breakpoint ati trace wnunands
‘~re~ <cornnwI&” restricts command to cwrent thread

‘thread n <commmb” restricts commmcl to threal n

‘W CCommad>” executes command over ail thre*

Current thread may be changed by typirlg “tlWe~ n-



1

1!
:b
:?
1s
1?

. . . .. . . . . . . .. . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . .. . .. . . . . . .
pu-lu (-16)
~— I w 4WL)

i;.
I
,...—,.. -—



SHARED SOURCE AND INSTRUCTION WINDOWS
Windows contain PC and breakpoint markers for all threads

PC markers indicate ~r of threads at given location

If only one thread at a ~ation, PC marker identifies it

Breakpmnt In~ers distinguish between regular and synchronous breakpoints

Bredtpomt markers indicate thread scope of breakpoints

SELECTING SIN6LE SOURCE WINDOWS

St~r@ due to breakpoints, etc. causes thread to be displayed

Selecting new thre~ causes thread to be dispiayed

U= can create additional windows

Windows may be either change~le of fixed

,.”.- ,



The Effects of Register Allocation and Instruction Scheduling on
Symbolic Debugging

Ali-Reza Adl-lhbatabai and Thomas Gross
School of Computer Science
Carnegie Mellon Univcmity

Pittsburgh, PA 15213

1 Intr4xluction

A numk of mockm high-pafomanee pmceams expose InstructIon-level pnralklism as well as

large reglsta fll~ to ~ COmpikr. Shm tl’E pamlkllsm and b storage hhwchy sre exposed, W

compiler has W opportunity to explolt the parallelismin ~ ~ogmn M to nzlwc the DWWrytrtic
by keeping the most hjuently ~ varlablea in reglstcrs. InstructIon sc&xWlng and register

allocdon/assignment are w optlmlzulom that are commonly InchmjedIn eomp:!ersfor modern
prtmsaors. ?hese opt.imizat.ions, however, affect setting breakpoints and inspecting variablea by a

symbolic debugg~, which attempts to present to the usa a source-level view of program execution,

The instructions for multiple source language statements are Mermlxd, and soum variables are given

different storage locations during U’& execution of a program.

Suprscalar, (V)LIW. and (supz)plpelhed proeessom can hsue and execute multiple opera!lons
concurrent y. An opdtnlztig compiler can Increase ttw efficiency of swh ~ by StSdCdY

scheduling independent opamt.ions foremeurrent execution. Howev-, schduling may result in source

expressions executing out of source oder. U asalgnments are extxutd out of ordu, the sequence in

which source level valum are computtxlwill be differentfrom that spociW In the sourw progmm.

Consequently. If the debugger inspects a variable, the value retrieved fromthe variable’sIoeatlon may

not be the value expfxted, sItm aom computatkms specified In the source were performed out of

ordm.

Due to the incredng gsp bcl-n prrxewor and memory spds. cache mlsa penalties hmm bwome

increwdngly expeasive, one way In which W problem has been ddrcssezl, has been to include large~”

rcghler files on chip, allowlng tl’w compiler to select frequently &mssOtl values to be kept In registers.

Si nc~ there are typkdl y man y we program values than there are physlcsl rqdsters, a register may

h wlgned to dlflcreot valu@I dutlng execution. Consequently, at a breakpoint. tlw r@+tex awdgncd

10 a sourw variable at some point h time may be holdng anothes variable at the f.k the tmakpdnf

is cncounlerwl
..-.—-— —.— —
s!IPPItid in pul by LIM[kfenur Advmncal Rwarch I%ojectsAgency. lnfumwlon Sclwwe ml TechIwlugy OMUS, undar the

Il[le “Retiuch tmi%relbel(’uinpu{in~,”ARPA (kder No, 73M). Workfurniskd Incrmneclbnwhb thiI reneemb is pn)wdd
ulhlcr prune cutr-t MDA972-WX’-U)35 uumd by DARPAK”M() U](’arnegioMelbn llnlvwshy.
“Ihe vwMsandmmddurm umdned in Lhlsdr.awnenlue the d lb Mhom d druuldno!he inwpreled u reprmenlint
the I)(llcialpolka, silk enpwmcdtmUT@U, w U* 11.S.(kwrunenl.

11’,



Previous work on debugging optimized code has been concerned with a number of issues, e.g.,
which user variables are up to date at a breakpoint (starting with [11,14]), where to find the most
accurate value for a user variable ([10]), how to map source code breakpoints to stopping points in the
targetcode (! :0,4]), how to deal with specific optimizadons([ 15]), how to @ with implementation
issues ([12,7]), and how to present the information to a user ([6]).

Our work focuses on the debugger issues raised by code reordering and storage location reuse
due to register assignment. We implemented the techtUques dt%cribedi~ this paper for the iWarp C
compiler, which is based on the FCC2 compiler. In this paper, we present measurements of the effects
of these optimization on the ability of a debugger to mwwer source level values for a few benchmarks
selected from a SUM of numerical programs[13],

2 Background

In the next section, we briefiy introduce the key concepts of our symbolic debugger. l%en we disc~s
those features of the compiler that are relevant for this paper.

2.1 Qebugger model

Our debugger model supports the base operations of control breakpoints, data inspection, and execu-
tion continuation. Control breakpoint are either synchronous, such as source level breakpoints, or

asynchronous, such as program faults or user Interrupts. ln this paper, “execution stops at instruction
f’ means that the execution stops before / completes, ‘Ilutt is, eithex an asynchronous breakpoint oc-

curred during the execution of/ (e.g., an emption), or a synchronous breakpoint was placed at 1. The

topic of mapping source statements to machhte humuctions has been studied by other researcheTs[9],

The strategy used by the debuggw may restrict which machine instructions can produce breakpoints,

but since we want to allow the user to interrupt W execution of a program at any moment. we do

not impose any restrictions on where a breakpoint can happen, Therefore, our algorithms and our

evaluation iS based on the assumpdon that any instruction can be a breakpoint.

Data inspection is Lirrdted to source variables. The debugger dues not change the state of a program

except for setting breakpoints; data modification by the user is not sup~rted. When the user inspects

a variable, the value stored in the variable’s location may be irrelevant because ttw variable has not

been imialized during the execution of the program. There are two possible policies that a debugger

can adopt:

1. Warn the u~r that a variable is unhdtialhd.

2. Let the user beware, do not nodfy the user.

In the absence of support fxovided by the runtime systcm (e.g., path descriptors [ 15]) or the arch.i-

tCCtUH3 (t?.g,, memory ~s), hi! fk%tO@MI ~dft% U@ the debuggex oh@ins DtY)gram fbw 5.fd@s

information from the compiler. [f no definition of a user variable V rearbes a point L in the source,

then V is uninitiidizxd whenevexthe program breaks at L. IMs data flow problem is known as reaching

dclititionsl 3]. Note that even if pdlcy one h adopted, lhc debugger cannot help in the case that

Mirdtions reach on some but not all paths to L.
When the detmgg~ is jnvokcd :LSa result of cncountdng a control tmakpoln(, the aL!ress in

Ihc t)bjcct code where the breakpohu occurs h called the object Lmw@inl, and the soum statcmun{
where the brwdqwint is rqxmd is called the soun-f ImWkpmn[.

IIf)



At a breakpoin~ the debugger must determine if a variableis msi&nt. A variable V is called resident

if the debuggex can futd a storage location that holds the value of V, otherwise V !s nonivsidenr. There
are several methods a debugger can use to answer the residency question, they are discussed in Section
3. A register promoted variable Vis called evic&?dif the regisr.er assigned assigned to V may be holding
the value of a variable other than Vat the breakpoint; this occurs if V’s register has been reassigned to
anothtx vadable. An evicted variable must always be reportedas nonresident by the debugger (unless

the debugger attempts recovery),
FMing a variable’s residence is only the first step, If the variable is rmident, them is no guarantee

that the storage location holds the value that the user expects for this source breakpoint. A source
variable wtmse run time value at a breakpoint is different from its expected source value due to re-
ordering is called a noncurmnr variable. A variable V is enduttgemd if the debugger detects that V muy

be noncurrent. Ordysource variables can be noncurrentor nonresident;rmmpiler-genemtedtemporaries
can never be inspected by the W, so the debugger never hw to display those values. Also, note that
noncurrency only applies to resident variables since only resident variables have a runtime value.

Consider the source code in Figure 1 and the object code genemuedshown in Figure 2. Variablesd
and f have been assigned the same regisox R4, and variable c has been assigned register R3. No other
storage location holds c, d or f. Note that register R3 is also used to hold an expression temporary
at instruction 13. Furthumore, on entrance to this block of code, d is dead, and register R4 (which
holds the value of d upon exit of W basic block) contains the value of f. Upon exiL f is dead.

Now let us consider the task of a symbolic debugger at different breakpoints. For example, each
of the floating point addition operadons may cause an exception. If an exception occurs at the fpadd
instruction 13. the debugger reports that execution halted at statement S1. At this breakpoint d is
reported nomiden~ since R4 holds a value belonging to variable f.

Now consida’ a floating-point exception during execution of 15, ‘11’dsis reported as occurring at

statement S 3 in the source code. At this breakpoin~ d la SW nonresident; c is also nonresident because

of the assignment to R3 at instruction 13. a is noncurrentbecause its assignment fkom statement S 1
has been delayed by the code scheduler so that 16 is executed after 15 (the breakpoint).

Similarly, when we analyze the situation at a breakpoint caused by instruction 17, which is reported

as a breakpoint at statement S2, c and f are reported as nonresident. R3 still contains the expression

temporary computed by instruction 13, and d is noncurrent since the assignment of statement S2 has

already been performed at 15, before the breakpoint.

Note that if no assignments to d rwh this block of code In the source, d can be reported as

unititial.ized rather than noncurrent or notwesidentt at any of the breakpoints.

a= b+c ; /* SI *i

c = e+g; 1“ S2 “/

d = a+f; /* S3 ● /

Figure 1: Example source code. All variabies are floating point.

The debuggw must detect the set of noncurrentand nonresident variables and report them as such
in response (o a uw qu~7y. TM is, it is acceptable that the debuggm cannot display the value of a

variabie in respon,w to a user quezy, but the debugger is not allowed to provide trdslcadlng informath

Ilw debugger may attempt to recover tk value of noncurrent or nonresident variable, hut recovery

may not aJways be successful. (Notice the difference between noncurrent and nonreddent variables:

!(M a noncurrent vsriabic, the variable’s location coutalns eithex an old or future value. A m)nmsidcmt



11: R.1 <-- load b
12: R2 <-- load g
13: R3 <-- fpadd R1, R3 -- b+c
14: RI <-- load e
15: R4 <-- fpadd R3, R4 -- d . a+f
16: a <-- Store R3 -- a=
17: R3 <-- fpadd R1,R2 --- c . e+g

Figure2: Object code gtxwmtedforsourceof F&urel.

variable is a variable where the debugger cannot determine the home location, and therefore no value
can be presented.)

2.2 Compiler framework

The iWarp C compiler (release 2.5) performs local code comp@on for the iWarp processor. iWarp

is an LIW machine, with 128 registers, of which 94 are available to the compiler. In a single cycle,
the iWaq3 can execute a floating point multiplication, a floating point addition, 2 integer opefadons or
memory acasses, as well as a loop termination test(5]. Compaction may cause function calls to be
reordered with respect to other operations.

Local variables that are not aliased are promoted to a register by the optimimr. These variables
rdong with compiler temporaries are ailocated registers tim an infinite pool of virtual registers. Virtual
registers are assigned physical registers after code scheduling, using graph coloring. Live ranges are
not split and promoted variables have no home locations in memory. ‘llwrefore, a promoted variable
resides in its assigned register throughout its live range. The assigner attempts to assign caller saved
registers to live ranges that do not span !imct.ioncalls. Register subsumwion or coakscing[8] is
performed to minimize the number of register moves. This optimization assigns the same register to
two virtual registers whose live ranges do not conflict but are connected by a register move.

The code schedukr and regist.a assigner of the iWarp C compiler create two problems for a
debugger. First, becauseof code scheduling, the debugger must detect which assignments and function

call operations have executed (or not executed) out of order with respect to the source stopping pOint,

and how source level values have been affected. Second, because registem may be reassigned, the

debugger must detect which of the promoted variables are resident in their assigned registers at a

breakpoint. In thh compiler, two types of instructions evict variables. A register promoted variable

may be evicted because its asaigned registex is re-adgned to another variable. (X, if the variable was

awgned a caller saved register, the variable may be evjcted because its vaiue is killed by a function

c:LII. Since promoted variables do not have home locations in memory, recovery of their vah.ws is

di!licult.

3 Detecting nonresident and noncurrent variables

our .dgorithms for detecting nonresident and noncurrent variables am implemented for the iWarp C

cmnpihx, but the same techniquescan be used foi othef procwors and other languages, The C compi Ier

was modified to pass hifmmation describing the results of register ailocticm and code scheduling to

the drbugger, Ilw results of registex ailocatkm and assignment arc described with two tables, onc that

‘{



maps register pomoted variables to virtual regktem and another that maps virtual registers to physical

registers, TIE inteamedlate representation (IR) of the program is annotated with information describing

the code generated for -h IR operation, and b annotated IR IS consulted by the debugger.

When a breakpoint occurs at an objectbreakpoint O, this object breakpoint is mapped to the /R
bmu@oint opem”on, the opmtion in h IR, for which a synchronous breakpoint was reacbd or
within which an asynchronous breakpoint occurred. The debugger performs data flow analysis on the

object to detect the set of nonresidentvariablesat O. (’Thedecision to determine this set on demand is

motivated by implementation concerns; it is ptxfectly possible to perform this analysis before program

execution and to record tM result ior each possible object breakpoint.) Then W debuggex determines
the set of noncurrent variablek by consulting the annotated IR. ‘hi! approach of annotdng the II?

for detecting noncurmt variables is similar to Hennessy’s[l1], howevrx, our annotations model the
physical registezs of b target machine as well as the Instruction-1evel parallelism exposed by the

concurrent execution of multiple operations. Details of our approach are described in [1] and [2].

3.1 Detecting nonresident vakiaths

me are two strategiesfor a debugger to determine which variables are nonresident. It can make a

conservative approximation, or it can try to obtain the exact solution. One conservative approximation

is to assume that a variable is resident only during ha Uve range. (h must be reaideat during the Iive

range, otherwise there is a compiler error!). ‘That is, a VariableIs mti- mtident * its l~t
use.‘Theattraction of this approach is that the compiler must matntatmI the live range information for

reglstez allocation. ‘The &awback is that a variable may stay In M register aftex its last use if the

register allocator has no immediate need for the variable’s reghter.

T?E seand strategy is to determine when a variable has been evicted. Let R(V) denote the register
w@gu~ tO a X@WEX promoted vti~]e V. A variable v becomtx evictd when R(V) is targeted by

an instruction that writes the value of another variable or of a temporary. After its evidlon, a varlsble

h nonresident (unless recovery is undertaken).

Information about eviction is available only trom analyzing the object program. Therefore to detect

evicted variables, our debugger performs data flow analysis on the object program, Machine operations

that target a variable V’s assigned regMer R(V) but do not correspond to source awdgnments to V,
are marked as causing V to @me evicted.l On the othexhand, machine operations that target R(V)
and an source level assignments to V are marked as causing V to become resident. All variables are
considered resident at the source node of a program’s control flow graph. Data flow analysis is then
employed to track the eviction of variables along the flow of Mructtons: a vadable V 1s evicted at a

point O in the object if it is evicted on any path hadlng to 0.

3.2 Detccttng armcurrent variabka

To detect noncurmmt variables, the debugger must detect which assignments have executed out of

sequence with rtspect to the source breakpoint, since it Is these operations that affect source Icvcl

values ,Z Tlwrefow, the annotated IR must record the canonical (source-order) sequence of asdgnments

as well as the order In which they are executed in the object. ‘IIw source order of assignments Is

captured by annotat.lng each ai$slgnment in the lR with a sequence number. The ordering defined by

the sequence numbers captures the canonical execution order of the IR awlgnmnts. Thc lR oprtions

~~~ “mabl~V” “,j@ s ~~r SS* nglti~, tin a futn!tkxl cdl o~tiion U ~M ~~~ u W8dh# ‘$ ‘gist~
~,:umtiOn~us ~w flti ~. ~vel “~w. ~ ~ @ COnl&&wi Rx conci.saneu,wo only rnentlon~@m@n~

!,, .

on the right hand side of an assignment expression E are marked with the same sequence number ss

E.
TIMorder in which I.R operations are executed in the object is determined by the code scheduler,

and the code scheduler must pass this Information to the debugger. Each IR operation may translate

into multiple opecatlons, which am phuxxlby the schedul~ into mtwhine instructions. ‘fherefore, each

Ii? operation is annotated with a list of basic block sclmhde offsets. Each offsel ident.ifleaa machine
instruction in the current basic block.3 ‘XW 05set of b last machine operation genemed for an IR

opeation determines when the IR operation complema execution.

Using sequence numbers and offsets of machine operations, the debugg= can determine which

operations have executed nut of source order at a breakpoint Let 1? be the II? breakpoint operation,

and O be the block offse4 of the object breakpoint. ‘Them are two ways that an IR asdgnmeat operation

A Cm be ~Ofmed out of source sequence:

1. A executes before the breakpoint operation B in the canonical execution order but was scheduled
to execute after the breakpoint O.

2. A executes after the breakpoint operation B in h canonical execution order but was executed

prematurelybefore the breakpoint O.

Having detected which assignments have executed out of sequence, the debuggex must detect

how source variables have been af&ted, Pointers and aliased variables complicate the analysis of
noncurrent variabla ‘W debugger must ensure that if it cannot precisely detamine the currency

status of a variable, It makes only Inconsequential arm. ‘hat is, the debugger may not announce a

variable V as current, if it is possible that V is noncurrent, Considcx an assignment Into a location

pointed to by p:

. . .

a= /’ B “/

“P = <expr> /* s *}

If the store of S is moved above the store of B (the compiler determined that a and *p are not
alissed), then the location pointed to by p is noncurrent if a breakpdnt occurs at B. If the debugger

can recover the address of the location stored into by ●p, It can precisely detect which variable is

noncurrent at the breakpoint. However, if this is not possible (for example p may be nonresident at

the breakpoint), the debugger must report any variable that is pofenh’ally aliased to *p as endangered

(potentially noncurrent). The wmpiler’s memory disambiguat.km or ailasing analysh can Improve the

debugger’s c%anc?to determine the currency status of Potentially aliwd variabiw. Any variabic [hat

the compiler certifies ns nonallased will not be noncurrent due~ *p.

33 Noncurrency cauaed by register subsumption

A reglst~w move opexatlon copies the contents of one register to another, ‘The optimization of register

subsumpth[8] or coalewing attempt9 to eliminate rcgista move operatiom by a$signing the sanw

physicai register m the source and deat.lnatlon virtual registers of the move operation. However,

cii rninatlng a move operatkm that corresponds to a source Icvei assignment affects debugging. C{msidm

the M iowi ng source code:
.— .—. —, —-. —.---- .

J$lnCe~h~ul@ ~ ~~(~1~ u ~ ~M~ h~~k IcJv61, We usu M IIffUt from t~ bghlllhlg O(~e h~~~ ~lt~~-ki~lNto&~‘)f

IW mfitfuctimt atklmm

)(I

Y = Z+Wi /’ S1 “/

...

x= Yi /’ S2 “/

Assume for the sake of exposition that code germation has not reordered execution. Assuming that
both x and Y are~omoted to registers, the code selector will generate a move opmt.ion for the
assignment in S2. Coalescing will assign the same register to both x snd y (assuming their live ranges

do not conlllct), elhninating the move operation generated for S2. In effec~ S1 and S2 are performed

at the same the, and r will hold the value of both x and y after execution of S1. If a breakpoint
occtm somewlwre between S1 and S2, S2 will have executed too early. Consequently, x will be a
noncurrent variable at such a breakpoint. ‘RI model this skuatlon, the R of S2 is marked as being

executed at the same the as S1 so thatthe noncurrency detection algorithm will detect z as being
noncun’entbelween S1 and S2.

4 Results

We have analyzed the effects of register allocation and instruction scheduling on nine numerical

programs. In this section, we report results Eom two programs selected as representatives of this sec

bead (modified Bessel fimction / of integer order), gaussj (Gauss-Jordanelhnhtatlon), md ludcmp (W
dec.ompoaltion for solving a system of llnearequations).

4.1 The effects of register allocation

Figures 3 and 5 illustrate the effects of register allocation on the debugger’s ability to recovex source

variables,by showing the average numbtx of register allocated variables that are nonresident at a

breakpoint. The Ieflmost column shows the averagenumber of register promoted variables, while the
other columns show how the number of nonresident vadablm is reduced by using data flow analysis to

find reaching and evicted variables, ‘Ile second column from@ left strews the number of variables that

are nonresident if the debugger uses a variable’s live range as the range in which a variable Is reddent.

lle.se t-e the results that would be obtained if the debugger used a simplistic approach to detecting
nonresident variables. lhe tldrd column show the results of augmenting Iivc range Informat.lonwith
reachJng analysis to find wdnhlallzed variables, ‘The foti cohunn shows the number of variables

thaf are nonresident using data flow analysis m find evicted variables, and the fifth shows the effects

of using reaching analysis to exclude unhdtlallzed evicted varlablea.

The results from this figure show that employing data flow analysis techniques in the dcbuggtw

reducxx the numbs of nonresident variabks. Comparing the second column wh.h the fourth, and the

third column with the fifth, shows tlw Impact of the cvictlon data flow ana.!ysis, while compwing the

second column with the third, and the fourth column with the fi!lh shows how rcachlng analysis helps.

4.2 The effects of instruction scheduling

Dccause of ra~rdered pointer assignments and functh catls, W preclsc nutnber of noncurrent varlahlM

cannot he determined. ‘fIwrefore, the cffcds uf instruction schodull ng cannot be anal yml bawd on

the number of noncurrent vadahks. Instead, the analysls IS bawd on the number of twcakpolnts that

c(mtain noncurrent variables.

Hgures 4 and 6 Illustrate!the cflccts of Instmctlon scheduling by showing Ihc percentage of break

~dnts that have noncurrent varlablc$, and comp- this with the pcrctmtngc of brcnlqxdnts that htivu

nonresident variables. ‘l’he leftmost column shows the percentage of breakpoints that contain non-

current variables. A breakpoint contains noncurrent variables if there are rtmrdered awdgnments or

function calls at the breakpohit. ’17w second column shows the results of using live range information

to detect nonresident! variables, while third column shows the remits of using evicted and reaching

data flow ans.iysis to detect nonresidentvariables.
‘Ihw? resuh.s show that as fw as breakpoints are am..erned, nonresident variables pose much more

of a problem to symbolic debugging than noncurrent variables, Results from the other numerical

programs that we iooked at are consistent with those shown here. The pacentage of breakpoints

with noncurrent variables ranged flom 15-30%, while the pexentage of breakpoints with nonresident

variables ranged ftom 65-1(X)%w~n the simple live range approwh is used and 40-95% when the

reaching and evicted variables data flow analysis is used. Programs that have an average number
of register promoted variables of ovti 10, have a high percentage of breakpoints with nonresident
variables, 95% percent or more for the live range case, and 70% or more using data flow analysis.

S Concluding remarks

Previous work on debugging optimized code has been mostly concerned with noncumncy due to

reordering or elimination of assignments. Our investigations indicate that nonresidency of register

promoted variables is a serious problem that must be addressed by a symbolic debugger for optimized

code.

The techniques used by the debuggtx to determine residency significsn impact the ability of

the debugger to allow user inspection of variables, If the debugger relies suely on the compiler’s

view of a variable’s live range to determine residency, the debugger misses many opportunities to find

variables, l%ose variables that are dead but still in a register are reported as nonresident. However, if

the debuggex analyses the object code, it can determine when a variable is evicted, and only evicted

variables are reported as nonre4dent, Reghter pmnoted variables are evicted by reuse of their assigned

storage locations - either cxpiicitiy by an instruction that target the register that holds the value, or

implicitly by a function call if the value is kept in a caller-save register.

Acknowledgements

Wc appreciate the contributions by the Intel iWarp compikx team in providing us with a compllcr

framework. We cspeciaiiy thank James Reinders for numerous discussions of the compiler intt!!rmls.

References

I I 1 A. Adi-lhbatabai. Symbolic debugging of optimized C code, Tbchnical report, School (~f (’om-

putcr .Science, Carnegie It4Alon University, 1992.

(2] A, Adi-lhhatahai snd T, (imss, Evicted vnriabhz.. and the interaction (}f global register all(rn.alltm

am! symbolic debugging. In Pmt. Z(hh POPL Conf, ACM, January I W 3.

[3 I A. V. Aho. R. .%[hi, and [Jllman J. 1), Compikr. Addistm-Wedcy, 191M,

[4] “1. Uemmeri and R, Wismuciicr. Qucllwde deiwgglng von global optlmlwtm progratnfnvn. f’rc -

wnmi at 199’2Ilagsmhl ,Scminar, i%b, 1992. (In {Iwmnn).

[5] S. Borkar, R, Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore,C, Peterson,

J. Pieper, L RankIn, P. S. lheng, J, Sutton, J, Urbanski, and J. Webb. iwarp: An integrated
solution to high-speed paralIel computing. In Proceedings of Supemomputing ’88, pages 330-

339, Orlando, Florid~ November 1988. IEEE Computer Society and ACM SIGARCH.

(6] G. Brooks, G. Hansen, and S. !Nmmons. A new appro~h to debugging optimized code. In Proc,
SIGPIAN’92 Con~ on PUN, pages 1-11. ACM SIGPIAN, June 1992.

[7] B, Bruegge and T. Gross. An integrated envi.munent for development and execution of real-

time programs. In Prvc. ACM International Co@ on Supemomputing, pages 153-162, St. Male,

France, hdy 1988. ACM,

[8] G.J. ChaWn. Re$stex allocation and spllUng viagraphcoloring, In Pnx. of the SIGPLAN J982

Symposium on Compiler Construction, psges 98-105, 1982, In SIGPLAN Notices, v, 17, n. 6.

[9] M. Copperman, Debugging optlmhed code without being misled. ‘Echnlcal Report 92-01, UC

Santa Crux, May 1992

[10] D. S. CoutanL S, Meioy, and M, RUSC.WL Dw A practical approach to source-level debugging

of globall y optimb?d code. In Pmt. SIGPW 1988 Conf on PLDI, page!+ 12S- 134, ACM, June

1988.

[11] J,L. Hennasy. SymboUc debugging of opdmlzed code, ACM hns. on Prugmmming Lmguuges
and $YSkMS, 4(3):323 -344, 1982.

[12] 1? Kessler. Fast breakpoints: Design and hnpiementatkm. In Proc. ACM SIGPLAN’9Q Co~. on
PLDl, psges 78-84. ACM, June 1990.

[13] W, H. Press, B. P. Flannery, S, A, lkukolsky, and W. T. Vetterllng, Numerical Receipes in C,
Cambridge [Jtdvmslt y Hew, 1991,

[14] D, Wall, A, Srivastava, and F, ‘lkmplln, A note on Hennessy’s ‘symbolic debugging of optlmln!d

code’. ACM 7hns. on Programming hnguqrs and Systems, 7(1): 176-181, January 1985.

[15] P A41wcger, An interactive tdgh-level debugger for control-tlow optlmlz.ul prngrams, In Pmc,

of the ACM SIGSOHXHGPLAN Sojhwm En~intwin# Symposium on High-kvl lkbu#ginx,
pages 159-171, ACM, 1983,

19Avg fwwdduU WtaMa, ddum dgmmbulbyiivo.mg edmmnow

o-
‘ e-

4-

2-

Bcssi

(;uussj

m Bmkpdnb Mm mmurrmt VwhMa

m Bmakpointa withnonraaklantvarlablaa,roalduwadatorrrdmdby IlvorangoAM flow

g RMkpo<audthnmddont vatlMoa, raaldawa datarwdnadby ovbtd ●nd roachingdata flow

100 , 1

00

70

m

60

40

30

20

10

0\

I

Bessi

l!]
70

60

00

I

I

“i d

Gtiuss.j

Figure 4: Whet of Instmdlon ,Wedullng

g Avg.nurnborof ragktw prornotodvariabk

~ Avgnonrwktantvariabioqraakkwo datarrnhwtby Iivorang. data flow

N AVOrwxrrwidantvariath,raaldanoodatarrninadby Ilvorang. and roachingMallow

~ AVUnonmaidantvmiabh, rwldancodatarwdnadby avtctaddah tlow

m Avgnonmsktantvartablaa,maidanc. datarrninadby avtotadand rcachlngdata ftow

20

i:

18

16

>14

E

12

10

i:

8

6

1-

4

2

0

Ludcxnp

Figure S: Effect of reglstm allocation

~

Z Braakpcdntswithnonourradvariablaa

● Broakpomt.withncmraddontvadabloa Tuktanoadatarrninadby Ilvorang. data flow

u Broakpdnttwithnonraaidantvariakh, rmdonca datcrrnkwdby ovictadand rmiurrg data How

100

(m

m

II
70

00

li~

1!

40

~w

20

10

0[

I.uticmp

Figufr 6: WTect d’ irt.wuctiwt ,sclkcduling

I ‘(I

Debugging Optimized Code:
Currency Determination with

Data Flow

Max Copperman

mart@ cse. ucsc.edu

Board of Studies in Computer and Information Sciences

University of California at Santa Cruz

Santa Cruz, CA 95064

ABSTRACT

(lptimizlng compilers produce code that impedes source-level debugging. optimization cnn
{Iislurh LIW niapl)lng t)e~wmn wurce ataternent boundaries atld machine iu~tructiotw, ‘1’hi~paper
I)rrwl)ts R mapping that enabl~ mstting breakpoints nt source stntcmentir an(l single steppiug at the

st.atrllwut II*WIin optimized code,
olJllllllZaLi(MI can cauee the value of Hvnriablc to hc noncurrent - to di!kw from the value that

w(NIl~lhr prmlictd by olnlula~irrg the imurce code. If a drbuggm hen not displmy a warning whrn
I.IICflrhugger umerMkmfor the value of a noncurrent vnriable, the user will lw wridd. ‘l’his pnpw
[l~writwma fiirnple dataflow algorithm to &tern~inc R vnriahle’s currrncy, and nhowmhow II d~huggrr
r;~n IISCLIIPrraulta to dmribe the relevant tdfrctH{jf (q)timization ‘1’hrdeterlniuation IIWIIMMI iN

ttl(wr grnrrml than prrviouoly puhlinhc(l motho(l~.

1. Introduction

Original Source Code After Comtant Propagation After Dead-Store Elimination

x - ●prcmion; x ● ●zprassion; x = ●xprosslon;
.
x m con~t~t; x - Conmtaut;
.,.

y=x; y ● Conetant ; y = conmtant;
.

Figure 1.1: Potentially Confuoing Optimization: Aaaumethat the only uee of x after the
assignment of constant to x in the one ohown. Constant propagation removee that uae
(shown in the second column). Sukequently, the dgnment of conataut to x may be
eliminated aa shown in the third column. If the debugger is aeked to display the value of
x anywhere after the eliminated assignment, typical debuggers will display ●xproos ion.
The user, l-king at the original eource code, may wonder why the displayed value in not
constant, or may wrongly believe that the value being aasigned to y is ●xprasaion.

1 Introduction

Debugger users can set ● breakpoint at ● eource statement (my, S), and when .! is reached,

can have the debugger display a variable, say, V. Meet debuggers will dinplay whatever is in V%

storage location. Assuming it has not eliminated V, optimization can introduce two problems for

this scenario. After optimization, it may not be clear which instruction generated from S (if any)

reflects the user’s notion of being “at” S. Even if such an instruction is found, the value in k“s

storage location may not be the value that the source code would lead one to expect. For example,

due to a code motion optimization, an assignment to V may have been done earlier in the generated

rode than in the xource code. This ran confuse, mislead, slow down, and irritate debugger uuers.

l~igur~ 1.1 i~ an example of the latter problem, rauaed by constant propagation followml by dt’ad
stnr~ elimination.

2 1. Introduction

different piece of data because the program is loaded at a different Adress. Optimization can have

the same effect: because the size of the code and data space differs from an unopt imized version,

an assignment through a stray pointer can hit a different piece of data, 1

Because optimized code does cause difficulties in mapping between the source code and the

machine code, if a debugger providea source-level debugging of optimized code, it should warn the

user when its reponsea COqueries may have been afected by optimization.

1.1 Overview

Section 2 describes a mapping between source statements and machine instructions that allows

breakpoints to be set at the debugger user’s notion of source statement boundaries, When such

a breakpoint is reached, if the value in a variable’s storage location is suitable to be displayed

to the user, the variable is cument. The remainder of the paper describes how to determine

whether a variable is current at a breakpoint - the problem of cumwcy determination, investigated

by Hennessy [Hen82]. The fundamental ide: behind this solution to the currency determination

problem is the following: if the definitions of a variable V that “actually” reach a breakpoint B are

not the ones that *ought* to reach B, V is not current at B. The definitions of V that actd.ly

reach B arc those that reach B in the version of the program executing under debugger control.

The definitions of V that ought to reach 1? are those that reach 1? in a strictly uncptimized version

of the program .2 Section 4 describes a dataflow computation that produces a set of pairs the

definition of V that ought to reach B along a path p is paired with the definition of V that actually

reaches B along p. Given the set of such pairs for V at B (the prairvd reaching set jor V at M

w i’li!+~), V is current at B if for each pair, both positions of the pair are occupied by the same

Minition,

III order to determine a variable’s currency:

1, Tho compiler must generate a Bet of debug records relating statements to code addreww;

IIICSVdebug records are ordered in two flow graphs, onc representing the program Iwforr

ol)timizi+ti~n and the other representing tho program after optimization.

2. ‘1’hv Ih)w graphs are used to romputv paired r[’aching sets,

:J. A paired roaching A is inspected to dotormine the rurrrvwy of t hc variablu.

, l,,

2.

2

Breakpoint Model 3

Breakpoint Model

In unoptim.ized code, the instructions generated from a statement are contiguous,3 and code is

generated for every statement in the order in which it appears in the source code. Breaking at a

statement S corresponds to having executed all “previous” statements, that is, having executed all

code that was generated from statements on the path to S, and suspending execution at the first

instruction generated from S. At that point, no ‘subsequent” statements have begun, that is, no

code that was generated from any statement on the path from S (including code generated from S

itself) has been executed, and the value in each variable’s location matches the value of the variable

that would be predicted by a C1OW reading of the source code.

Debugger users expect these characteristics to hold when execution is suspended at a statement

boundary. Considerable optimization can take place without compromising these characteristics

(for one example, invariant address calculations can be moved to hop pm-headers). Such opti-

mization may be largely ignored by the debugger without impeding sourcelevel debugging.’ The

user needs to be informed only about optimization that ailscts source code variablea and statement

flow-of-control. Telling the user about optimization on compiler temporaries is likely to make the

debugging job harder, not easier.5

2.1 Syntactic and Semantic Breakpoints

The machine instruction used as the breakpoint location for a statement should be chosen

bawd on the user’s intent, The user may set a breakpoint in a loop to be able to poke around

on each iteration, If the statement at which the breakpoint is set were moved out of the loop by

optimization, it would be appropriate to set the breakpoint where it used to be. OtI the other

hand, the user may have set the breakpoint to check the values of variables used in an expression in

[hat st.atcment. In that case, if the statement were moved out of the loop, it would be appropriate

to set the breakpoint where it ended up, so the values the debugger displays are the actual values

used in tho expression,

of course, the debugger does not know the uspr’s intent. If thr-se situations are to I](1distin-

~llish(d, two types of breakpoint arc needed. Zcllwegcr [H84] intrmluced the terms .~ynfmlir il[id

St r~lat)tir hr.’akpointa. ‘~he order in which syntactic breakpoints are rrache(l rcllects tho synt.actir

tmlor of source statmmmts; the syntactic. Imakpoint for statwnont n is nevvr after th(’ syntactic
. ..-——------—. —

‘(‘,)iIr.g~ll(ralr~ from l~pinR or branchlnRslat~mrntn in typically not rontigrroun. Ilowmrr, thin lack I)f (ontlgully

I%l)rr~rnt IIIthe nowr(r cmh M wd u the gmwratrd (xdr.

* ?iI)lr tlrat ~111h cmir motion In frlrvarrl 10 trap h)l”4il!JII r,’lmrlmg. If an addr=u mlmpuldmr in II141VPIIup (IW1

IIf a hmp, and the rlmlputttmn trapa, thr u~r ~ht)uhl be inff rmrd that thr lrq (wrurrrrl in Lh~ malrmrnl that Lh-
.uhlrms cc)lnputalmll orlglnatrd in,

“ l’hrrr ate (lr(unl~l,ailtrm In wtrhlr it fn Illlportmllt for thr drlnr~~r to r?vm.1 thr rffrrh IIf {)plimlzmti{ju AI I hIn

Irvrl d drhrl, RIMh ama.ilowlng the uwr to trark down ● t IAg-ntration hug Innu(h cirrumnian,m, IL IS ~l~ljr,lprI~{r

1,1 +hIh L(I mAthlnr Irvrl llrlm~lng

4 2. Breakpoint lkfode/

Unoptimized Optimized

/

Semantic Breakpoint /a. 5;

while (conditio while (condition)

~— Syntactic Breakpoint —-
a = 5;

b = fcno; b = fcno;
.

} }
Figure 2.1: Semantic and Syntactic Breakpoint Locations

{

breakpoint for statement n + 1. lt will be at the same location if the code for n is moved or elimi-

nated. If the code generated from statement n is moved out of a loop, a syntactic breakpoint for n

remains inside the loop. The semantic breakpoint for a statement is where the action specified by

the statement takes place; where the code that implements the ewmce of the statement ends up.

If no code motion or elimination has occurred, syntactic and semantic breakpoints are the same.

Figure 2.1 provides an example of the syntactic and semantic breakpoints for a loop from which

optimization haa moved an invariant statement.

The proposed breakpoint model supports both syntactic and semantic

assumes only syntactic breakpoints are available.

2.2 Breakpoint Locations (Representative Instructions)

breakpoints. Section 4

The instructions generated from a statement that are possible breakpoint locations for that

statement are the statement’s rqmwentctiwe instructions. The first instruction generated from a

statement that has an effect that is visible at the source level is an instruction at which the user

may want to br~ak, and thus is selected as a representative statement. If a statement has multiplr

vf~octs that are visible at the source level, it will have one representative instruction for each. K’or

Ml ~signmcnt, the representative instruction is the instruction that accumplitil.es the store of the
r{i%llltinto the variable (whether it is a store instr~l~tioll or a computation into a register). (:hmr+iug

t ho store as thr representative instruction for variable modifications is crucial to the corrw.tnrss of

tht~ work presented in the remainder of the paper. For loops and branches, the branch instruction

is the r{’prwwntative instruction.

‘1’lw (‘ statrnwnt if ((i ● j ++) ● = k) has three rcprwmntativr instructions (and thvrrforv

f II rw’ potisihh! I)rt’akpoint locations), one at t h(’ store into j, mrv at t hc storo into i, and WI(IiLl 1hI’

t)ranrh to the then or else caac,

For t hv duration of this paper, the term I)rrakpoint rvfm to a sourr~-lvwd Im’akpoint, that is.

tlw I(wati(m of a rq)rcsfv}tativ~ in~trur’tion.

3. Currency 5

Unoptimiaed

T

ax=

Optimized

9

a=x

mm
Figure 3.1: Variable 4 is current at bkpt

3 Currency

If the debugger usar ask; the debugger to display a value that optimization haa caused to

be different from the value that would be dieplayed at the same point in unoptimized cde, the

debugger should warn the ueer.

I call the value in ● variable V’s storage location when execution is nuapended at a breakpoint

its actual WI&. V’s ezpted wdue ●t a breakpoint is the value that would be predicted by hand-

simulating the program to the breakpoint.

ln unoptimized code, at each breakpoint the expected value of every variable in identical to its

actual VaIue, but thin is not the case for optindzed code. Henneasy [Her#2] introduced the terms

cumwd, noncumnt, and endangered, which describe the relationship between a variable’s actual

value and its expected value at a breakpoint based on a static analysis of the program.

Informally, a variable V is cunnl at a breakpoint 1? if its actual value at B is guaranteed to

be the same as its expected value at 1? no matter what path waa taken to E. Examples of current

variables are given in Figures 3.1 and 3.2. In the examples, bkpt represents the breakpoint.

I is noncumnf at B if its actual value at f3 may differ from its expected value at B along

every pat h to B (though the two values may happen to be the same on some particular input).

Figures 3.3 and 3.4 tihow examplea of noncurrent variables.

L“ is endan~rv$ at B if there ia at least one path to B along which V’s actual value at l!l may

ditfw from its expected value at B. Figure 3.5 i. an example of an endangered variable.

In Figure 3.5, ● is said to be current along the left-hand path and noncurrent along tho right-

hand pat h.

‘1’his work builds on previous work that defined a vocabulary for discussing the pmbhmi ‘1’hc’

dvfiuit icms and discussion in the remainder of thi~ wwtion arc largely as taken from [CopW].

]Ivraum optimimtion may modify the Promam’s flOW gra~ht w~h must bc d~fin~ in WICha W~Y

lhat it makes sense in both the unoptimizml and optimized vm~ions of the program, ‘1’hcrr wro

tw{) rdcwant r(’lationdlip~: th~’ rplationtihip Iwtwoml thv optimimd and unoptimized flow grq)hs

3. Currency

Unoptimized

a = Y

b

ax=

v h

bkpt

Optimized

9
*

ax= a =
Y

v

bkpt

Figure 3.2: Variable a is current at bkpt in the presence of relevant optimization

Unoptimized Optimized

ZZ
Figure 3.3: Variable ● is noncurrent at bkpt

Unoptimized Optimized

8

ax=

bkpt bkpt

Figure 3.’1: Variable a is nonrurr[ml at bkpt due to Ao tnotion

3. Currency

Unoptimized Optimized

ax= a = Y ax~

A

k f h w

bkpt bkpt

Figure 3.5: Variable ● is endangered at bkpt

i

(as would be induced from generated code), and the relationship between the data structures used

to determine a variable’s currency; the pre-optimization flow graph and the post-optimization flow

graph.

Definition 1: A path p is a pair < p,, pO > where p. is the sequence of baaic blocks

visited in an execution of an unoptimized version of a program and p. is the sequence

of logical blocks visited in an execution of an optimized version of the same code on the

same inputs.

The

1.

2.

‘1,.

‘i.

_....__.._—

correspondence between baqic blocks in pw and logical blocks in pO ia u foUows:

AU of the code in block b. id p. may have been moved or eliminated by optimiza-

tion, In that caae b. corresponds to block ba in p., where b. is an empty block

that has been left in the poat-optimization flow graph precisely to maintain the

corre~pondence.

A basic block introduced by optimization that has a single successor (such as a

loop pre-header), together with its successor forms a single logical block. If z is

such a block and y is its successor, logical block y. in pO denotes both z and y,

and corresponds to VU in pu.6

There may be one block b. in p. corresponding to a sequence of blocks in p., on

condition that if the first block in the rnequence in pU is entered, execution will

always proceed through the entire sequence. In thin circumstance, the single Mock

b. is treated as a sequence of logical Mocks correspcmcling to thc sequence in pti.

Multiple blocks bl, ha, b~ in pO (not nccemarily ccmtiguou~) may correspond to

multiple intitancee of a single block b in pU, on condition that onc of the b, is in p,,
—————. .—

‘Sin(v= the Sllpercompuirr Drbugging Work-hop, this corrqonrlrmx hu hen found in some c- 10 irrtrodurr
● ~wnwrvativc inwcurucy inlo the currency dclrrmination algorithm A variable will h? r]aimml 10 k rndnngrred

hr[wrrn the top Id ● loop ●nd ● II uoignmrnt into the vmriahl~ wilhin the Irrop whmr it u in fat-tcurrrnt in that rrgion,
II an ●nmgnmrn L into that vari~bl~ in moved down into the hJop prehearlm frtrrn●bove. NrJsuch iuu:rurar.v~l!’1’urn
i(an anaiRnnwn(in movwl from lhr body of the loop to lhe plr-hea.der.

8 3. Currency

iff 6 is at the same point in the sequence pU.7

5. A block b. in p. has one corresponding block 60 in p. otherwise.

These correspondences may be combined, so for example, blocks in an unrolled loop may be

coalesced. Optimization that modify the flow graph in other ways are not handled by the algorithm

presented herein.

Both assignments to a variable and side effects on that variable modify the value stored in that

variable’s location. These terms do not distinguish whether the source code or generated code is

under discussion. ~rthermore, they do not distinp@h between unoptimized generated code and

optimized generated code. These distinctions are needed in this work because it compares reaching

definitions computed on unoptimized code with reaching definitions computed on optimized code.

Henceforth the term omignment refers to assignments and side effects in the source code. It

is convenient to have a term definition that can denote either an assignment or its representative

instruction in unoptimized code. This does not introduce ambiguity becauae either one identifies the

other, and the order of occurrence is the same in the source code and unoptimized code generated

from it. In contraat, the term store denotes a representative instruction for an assignment in

optimized code. As with definitions, an assignment corresponds to a store, but unlike definitions,

the order of occurrence of uaignments in the source code may differ from the order of occurrence

of stores in the machine code.

An optimizing compiler may be able to determine that two assignments to a variable are

equivalent and produce a single instance of generated code for the two of them, or it may generate

multiple instances of generated code from a single assignment. Such optimization essentially make

equivalent definitions (or stores) indistinguishable from one another. We will be conccrncd with

determining whether a store that reaches a breakpoint was generated from a definition that reaches

the breakpoint. If definitions d and tf are equivalent, and store s was generated from d while s’

was pyncratcd from d’, the compiler is fr~ to eliminate s’ so long as s reaches all uses of d’. ‘r{]

account for this, s needs to be treated as if it w= generated from either d or d’.

Definition 2: A definition of V is an quivalcrwc CIWWIof a.sriignmonts to V occurring

in the source code of a program that have twen dptormincd by a compilm to roprmwnt

t hi’ same or ●quivalent computations, or thv r~prcswntative instruction gmwrotc(l fr(ml

any mrmhm of such an cquivaloncr rlasti in an unoptimizml vrrsion of tlw program,

——... —.. — ——

7Notr that while this IS the m)rrc-pmrrlence needed for lorJp unrollinR ●nd irrlinin~ (procecedure inlrgrnliu n),thr

work M prrwntml in thb paper dcrcs not handl~ mth~rU[thcw uptimizatimn, Sw.lioll 7 dmcrllwn Iinlllatiwln ~ul I IIF

~]l]llnlitati(ms that ● rr hsndkd.

I ,,

3. Currency 9

Definition S: A stow into V is the set of representative instructions occurring in an

optimized version of a program that were generated from any member of the equivalence

class denoted by a definition.a

We can now formally define some of the terms described previously.

De9nition 4: A wriable V is cument at a bmakpint B along path p iff the store into

V that reaches B along pOwas generated from the definition of V that reaches B along

Pu“

De9nition 5: V iu noncumwnt at B afong p if the store into V that reaches B along

pO was not generated from the definition of V that reaches B along pU,

Definition 8: V is cumvnt at B iff V is current at B along each path to B.

DeOnition 7: V is noncumnt at B iff V is noncurrent at ~ along each path to B.

De9nition 8: V iu endangered at B iff V is noncurrent at B along at lemt one path

to B.

3.1 Assignments Through Aliaaea

Definitions 4 through 8 assume a single definition or store reaches a breakpoint along any path.

Consider an assignment *P through a pointer. When execution is suspended at a breakpoint D, *1’

may be an ah for V, ●P must be considered to be a definition of V that reaches B. If *P is not

an ah for V in some particular execution, the value that V contains at the breakpoint came from

whatever definition would have reached if ●P were not present. ‘1’hereforc, this definition must Am

be considered to reach B, For any language that allows aliaaing, a static analysis cannot amunw

that a single definition reaches along a given path.

The presence of multiple definitions or stores along a single path requires nlorc complrx vmions

of Definitions 4, 5 and 8. For clarity of exposition, i have chosen not to cover aliasing in this paptw.

‘l-ho r~quirod ddinitions may be found in [Cup%!].

I !(1

10 4. Paired Reaching .%’cs

4 Paired Reaching Sets

A paired reaching set PRS is a set of reaching definitions that includes information about what

should reach and what doea reach a given breakpoint. Such a aet is relative to both a variable and

a breakpoint: PRS~ is the paired reaching set of aasignmente to V that do/ehould reach B.

An element of a paired reaching set is a pair (d,s) where d in a definition and s is a store.

Loosely, for a definition d of V and a store a into V, the pair (d,s) E PRS~ means d should r~ach

B and s doee reach B.

More precisely, qiven such a definition d and a store s, independent of whether s waa generat~’d

from d:

(d,s) E PRS~ means there in a path p .wch that d reaches B along pu and a reaches B along p,,.

● V is current at B iff V(d, S) E PRS~, s was generated from d.

● V is endangered at B iff q(d, S) E PRS~ such that s was not generated from d,

s V is noncurrent at B iff V(d, s) c PRS~, a was not generated from d.

Because I want to use familiar notation for familiar tasks, I will allow ‘dotting into’ a pair: if

P is the pair (z, y), P,d iR the definition clement z and PA is the store element ~. (d, .~),d = d tmd

(if,.!).s = u.

4. Paired Reaching Sets 11

(d,s) and (e, t) where d and e are definitions of a variable k’, g and t are stores into V, and d or ,9

may be null, Table 4.1 defines (e, t)~ (d, s).

Table 4,1: The definition of K: (e, t) K(d, ~)

The R operation corresponds to the kiU operation in standard dataflow algorithms. Definitions

kiU definitions, and stores kiU stores. [f a block contains a store, its Gen pair contains that (non-

null) store as its second element, and pairs leaving that block contain that store as their second

demerit. [f a block does not contain a store, its Gen pair contains a nuU second element, and pairs

leaving that block contain the second element they arrived at that block with. The same goes

for definitions. To make this appear similar to n familiar dataflow operation (which it is), the K

operation has b-n extended to ● aet of pa.irtr (the [n set) and a pair. The [n aet may be empty

(in fact, every in aet is initially empty), in which case if the Gen pair contains a null, the result is

~mpty, otherwise the result is the set containing the Ctm pair:

00 (nuli, nul/) = 0

0 ~ (d, null) = 0

00 (Uufi,. q) = 0

(! l?J(d, .~) = (d, s). ‘1’hi~in corroct hecauae thu ~ operation in us~d to define the out set of a Mock.

If t hv hlork generates hot h a store and a definition, its Out set will conttin the pair cnn~i~ting of

th;~t ~ttm~~WIIddefinition, If it containn a null in oithcr ponition (or both), its out mt dep(md~ (w

t ho III Ht’t. lh”AIIUe vvory v~riable i~ A4inwl to hwvo an initial definition and strm, propagation

will I’v(*ntu Ally caum thv Idork to hav~ a mmwnpty [n Not.1’)Given 8 nomvnpty sot of pairs N And

A I);lir ,S”whvro ,S Inmy contain IIul]H, // I-J ,$ is vquivahmt t~] th@sot of pairs pr[durvd by indivh]ud

A [~pvr:~~i(ms 1)(’LWWSII t’m(.h pair in N itnd ttw ptir ,$’: // (’IS’ = {r K .$’lrE H}.

Algtirithln 1)11S r~m~putca pairmi rmwhing W*MAt Idfwk Imulldwric’n for A II(}w grq)h rt)IIIl)I)IIVIIl

[J :iullrt~utin~~), ,5’tarf i~ th~ fitart U{AF of thr flow grnph r[mlponmlt. d-intt and s-init *rt* initial

{Ivlilllllc}tlnnnd nt{mw rqrtvmnting tlw croati(m of a vnri4ddo.

12 4, Pm”red Reaching Sets

The paired reaching sets of each variable at each block boundary.

Step 1:

0 for each variable V

1 GenJtart = (d-init, d-init)

2 for each source block B

3 Gen~ = (null, null)

4 if a definition d of V is in 1? and reaches the etit of B in the pre-optimization flow graph

5 Gen~.d = d

6 if a store s into V is in B and reaches the exit of B in the post-optimization flow graph,

7 Gen~.s = s

Step 2:

8 for each variable V

9 for blocks B that can be reached in the post-optimization flow graph,

10 Ing = Out~ = 0

11 iteratively compute ln~ and Out~ until convergence, according to the following,

12 Ink = (JP Out~ for P logical predecessors of 1? in the post-optimization flow graph

13 Out~ =ln~ ~ Gen~

End of Algorithm PRS

For ease of exposition, we assume that there is at most one definition of a variable in a block.

A hasir Mock H that contains n definitions of V can be transformed into a sequence of blocks

l]~,lJ~,nB9 , }]n oarh containing a single kfinition of V, where I]iis the sole predecessor of lJ,+ I

And fl, +1 is LII(’ MOIQsuccessor of l], . Similarly, wc assume that there is only one store into k’ in a

Mock.

Algorithm PM provides III and out sots at block boundaries. our ~L)id is 10 d(’trrnlitw il

v~wialdr’s cu rrvnc y at an arbitrary breakpoint Hp. Lot B ho thc block containing Hp, and l@ 1, h{’

I lIf~ loCiLlioll” ()(tlw Mnition of V or sttmf’ into L“ in II,or null if ttwro i~ none.

I 1,,1

4. Paired Reaching Sets 13

4.1 Aliasing

Algorithm PRS assumes that a single definition of a variable reaches a breakpoint along a pat i,.

As discussed in Section 3.1, this is not the case in the presence of aliasing.

Paired reaching sets can be constructed in the presence of aliasing. However, the proof of

correctness of the algorithm was not complete at press time, so the material has been omitted.

14 5. When a Variable is Endangered

Unoptimized

a = Y

v

II*

I II

327

L J 1 1

f f

bkpt 339

I 336

c1ax= 342

Optimized
r f

a = Y 327

v *

ax=

bkpt 339
)

c1

336 (342)

Figure 5.1: The display of a could be accompanied by this massage: ‘Breakpoint 1 has
been reached at line 339. a should have been set at line 327. However, optimization has
moved the assignment to a at line 342 to near line 336. a was actually set at one of lines
327 or 342.”

s When a Variable is Endangered

Wlwn the debugger is asked to display a variable, it determines whether the variable is current.

lf the variable is current, the debugger displays its value without comment, If the variablo is

ondangmv-1, in addition to displaying its value, the debugger can give the user mm help in

understanding why the value is endangered, ‘1’hegeneral flavor of what the debugger can do is

given hy ~,twfollowing sample mrsriage that might accompany the display of variablv a whiw t II(*

ol)[illli~;Ltion” shown in Figure 5.1 has orrurrwl.

“llr~’akimint 1 has been reached iLt lirw 339, a should havo bwn st’t at lin~ :?’27.Ilowfwwr,

[q)timization has moved th~ awiignmvnt to a at line342 to nwtr Iino M(i. a was it(-l IIiLll V

svt ;klml~ ~jf lint’s WT or 342. ”

I’hv illf~lrlllilli[lll r(lnlainwl in this Inwwago is ilvaiiahlv frtml tho pairml rrw-hing w’t I’ll!+’j.l!,WIIl

I II(’pro ;LIId I)(w1 t@iIIli4iktion flow grapll~. ‘1’IIvdwwription of the i’lftwts ()({)ptimiliitl(m will v~~ry

ill spiwili(”ity :L% Ltlv dr(lrtq ()((}ptitl\itiLtion wiry in comph’xity.

!,,1

6. Running Time 15

6 Running Time

The worst-case asymptotic cost of Algorithm PRS is dreadful, though polynomial. Let n be

the number of blocks in the flow graph and m be the number of definitions of the variable in

question. Recall that the blocks may be split according to Sections 4 (n is the number of blocks

after splitting). The asymptotic worst case cost is 0(n%2). if n ~ m, it is an O(n5) algorithm.

However, we will see that in practice two factors of n and a factor of n can be replaced with constant

factors, for an O(nm) running time.

Computing paired reaching sets is done with an iter~tive algorithm that runs until it converges.

The equations are

and these are computed iteratively over a!l blocks B until no In or Out set changes.

We are concerned with definitions of a single variable.

Wit hin each iteration the computation of OutB is cheaper than the computation of InB.

Computing InB involves iterating over the ~u~ !n n) pr&cemors of l?, and InB is computed

for each of n blocks, so the union operation is performed na times. The union operation is a

merging of sets containing at most rn elements, which can be done in time proportional to m, so

each iteration has worst c-e cost of n2rn.

Jn the worst cue, each iteration could add one definition to one block, so the total number of

iterations could be nm, for an 0(n3rn2) total wor’:. c~e running time.

If the graph is traversed in the right order, on av.]age 5 iterations are sufficient for convergence

[,IS[J86], replacing factors of n m with a factor of 5.

‘1’wo factors of n come from iterating over n Necks with n predeceseor~ each. In practice, a

fully connected flow graph is a rarity. Most blocks ,la~e 0111.I or two predecessors, though Norm’haw’

Iuany (e.g., the block foUowing a case or switch statement). The number of predecessors is SOIIW

sInaJl constant which gives us an O(nm) running time.

I oxpoct m CObe fairly small on average, though the sizes of both m and n depend considoratdy

(m program characteristics (and coding style). In particular, hecwutw each subroutine is a IIow-graph

<xlnlponw~t, the COH!increiuw~ with the size {jfLho suhru~tineH. Without a working implolll(’lltatit}il,

I r;ll)m)t y(~t say whpthcr we will arhicv{’ spwIds acr(’ptahlt’ for inti}ractiv~ Iuw Ilowvvcr, I t.;lkv

t.~)nlft]rt in t II(’ fact that machine SPAS douhh’ rvgulai.ty.

16 7. Summary

7 Summary

In optimized code, statements may be reordered and the instructions generated from a statement

may not be contiguous in the final executable code. If the statement to breakpoint location mapping

commonly used for statements in unoptimized code is used for optimized code, a debugger user

cannot in general break at what the user considers a statement boundary, or execute a single

statement at a time. Section 2 describes a mapping between statements and breakpoints for

opt imized code that provides a reasonable approximation to what the naive user would expect.

It provides exactly what the naive user would expect on unoptimized code. ln optimized code,

it isolates points that correspond well to the user’s view of statement boundaries, and provides a

granularity of breakpoint locations fine enough that the user can ‘~tep’ without executing more

than a single statement. [f a statement does not have multiple side effects, one ‘step’ executes the

entire statement.

Optimization can cause the value in a variable’s location to be endangered, which means it is

unexpected and potentially misleading. A debugger must be able to determine a variable’s currency

if it is to issue a warning when asked to display an endangered variable. Hennessy [Hen82] [CM91b]

and Coutant et al [CMR88] give solutions to special caaes of the currency determination problem.

Section 4 describes a general solution to the problem for a large class of local and global sequential

optimization, including common subexpression elimination, cross-jumping, instruction scheduling,

other code motion, partial redundancy elimination, loop reordering, induction- variab!e elhnination,

and loop fusion.

The currency determination algorithm requires reaching-definitions information computm.1 lw-

fore and after optimization, but does uot require knowledge of which of these optimization have

hem performed, In addition, this reaching-definitions information allows the debugger to construct

informative warnings as to why a variable is endangered.

Tht’ results described in this paper arc conservative when a variable is current along all fwwihlr

paths hut noncurrent along some infewible path, in which cuc it will be claimed to be endangcrml. 11

Tlwrr ~rr important sequential optimizat ions that do not fall into the cl~~s drlinoatwl hy

IMinitions 1, ‘2 and 3. These are uptimizations that duplicate NNIQ In such a manner th:lt a

(llll)li[.iLl(~ docs not perform an equivalent computation to the original (as in loop unrolling wld

inlifliug). ‘1’hiHwork can be extcndvd to handh’ this CIWWof sqwntial optimization. hut ttll’

IIXIv[lsions aro Iwyoml Lhe sropP of this papvr. l)arallolizing (q)tinlizations hav{i not I)(N’IIronsidmml.

1’1:

7. Summary 17

The sets of reaching definitions used for currency determination can be used in a straightforward

manner to answer this question (’x was set at one of lines 323 or 351 ‘). One direction for future

research is whether reaching sets are adaptable to back-chaining such depenciences efficiently. This

has been called j?owback analysis by Balzer [Ba169], and has been investigated by others ([MC91],

[Kor88]).

Anether research avenue is how a debugger can efficiently collect the runtime information needed

to determine whether an endangered variable is in fact current or noncurrent on a particular

execution. In conjunction or as an alternative, how can the information from the compiler be

extended so that the debugger can compute and display the value that a variable would have had if

optimization had not been performed? Finally, an exciting possibility is extending the breakpoint

model and currency determination techniques to paraUel code, which is rife with noncurrent

variables.

18 References

References

[AU77] A. V. Aho, J. D. Ubm, uPrincipl~ of Compiler Dmign," Addison-Wesley, Menlo Park,
CA, 1977.

[ASU86] A. V. Aho, R. Sethi, J. D. Uhu, "Compilers Principle, T~hniques, and Tools," Addison-

Wesley, Menlo Park, CA, 1986.

[Ba169] R. M. Btier, "EXDAMS -Expendable Debu@ng mdMonitoring System," P~edingsoj

AFIPS Spring Joint Computer Conjemnce, Vol 34 pp. 125-134, 1969.

[Cop92] M. Copperman, “Debugging Optimized Code Without Being Misled,” UCSC Technical

Report UCSC-CRL-92-01, January 1992. Submitted for publication to ACIU Iltwwactions

on Pmgmmming Languages and Systems.

[Cop90] M. Coppernmn, “Source- Level Debugging of Optimized Code: Detecting Unexpected Data

Values,” University of California, Santa Cruz technical report UCSC-CRL-90-23, May 1990.

[CM91a] M. Copperman, C. E. McDowell, “Debugging Optimized Code Without Surprises,” Rv-

ceedings of the Supemomprder Debugging Workshop , Albuquerque, November 1991.

[CM91b] M. Copperman, C. E. McDowell, “A Further Note on Hennessy’s “Symbolic Debugging of

Optimized Code”, UCSC Technical Report UCSC-CRL-91 .04, February 1991.Submitted

for publication to ACM Thnsactiona on Prqmmming Languages and Spstems

[CMR88] D. Coutant, S. Meloy, M. Ruscetta “DOC: a Practical Approach to Source- Level Debugging

of Globally Optimized Code,” Proceedings oj the SIGPLA N ’88 Conference on Pqmmming

Lunguage Design and Implementation, pp. 125-134, 1988,

[FM80] P, H, Feiler, R. Medina-Mora, “An Incremmtal Programming Environment,” Carnegie

Mellon University Computer Science Department Report, April 1980.

[Henl12] J. Hennessy, “Symbolic Debugging nfOptimi~ed Code,” A C,U Tmnsactiorwon Pmgmrnrning

Languuges and Systems, Vol. 4, No. 3, pp. 323-344, 1982.

[KOrWl] U, Korl’1, ‘PI!! LAS Program Error- I.ocat ing Assistant System,” IEEE Tmnwumtious (JII

[\l(”Nxj

[M(’!)l,

[1’S!WJ

[1’s!)2]

,Softwam Engineering, Vol. 14, No. 9, pp. 1253-1260, !%ptem m 1988.

11,MiUer, J. (~hoi, “A Mechanism for Efficient Debugging of Parallel Programs,” l’rocrcding.q

o/ the .S’IGPLAN/31G’C)P.$ Workshop on Pamilel and Distributed Dcbuyyiny, pp. 125-134,

tladison, Wisconsin, 1988.

11,Miller, J. (’hoi, “Techniques for Debugging t’arallel Programs with Flowha(”k Analysis.”

,4(‘,!f 7hm,wrtions on f%gmmming Languagrs and ,Sy,*fc)nS,Vol. IX, No. ,1, l)p. ‘[!)I 5X1,
Iq!)I .

l., 1., I’l)llark, M, L. Sofra, “ Iligh IA’w*II)vimgging with tho Ai(l t~fan Inrrmnvntid optimiwr,’”

//uw(iii Inkrndi(md (‘oufrwnm on Systrm .Srietiws, Jauuiiry lWIH.

l,, l,. I’(dl;wk, M. l.. %dla, “lncrwnmlta] (; IoIMI l{~~)l)till]iz;lti~)[~ of I)rt)g!,iml~,” :1 (‘,11 /’mIIs.

flf’lIf)tI,Y fJtI /%wgmrn?)lj?iq [Alrirjtmys afi~f .$’rj.s/r!tJ,q, V(d, I ml,~(), ~, pp. i ?~] zoo,” I !)!)~.

References 19

[Str91] L. Streepy, ‘CXdb A, New View On Optimization,” Pnwedings oj the Supemomputer

Debugging Workshop , Albuquerque, November 1991.

[WS78] H. S. Warren, Jr., H. P. %Maeppi, ‘Design of the FDS interactive debugging system,” IBM

Research Report RC7214, IBM Yorktown Heights, July 1978.

[Ze83a] P. Zellweger, ‘Interactive Source-Level Debugging of Optimized Programs,” Reseamh Report

CSL-89-~ , Xerox Palo Alto Research Center, Falo Alto, CA, Jan. 1983.

[Ze83b] P. Zellweger, ‘An Interactive High-Level Debugger for Control-Flow Optimized Programs,”

SIGFLAN IVotices,Vol. 18, No. 8, pp. 159-172 Aug. 1983.

[Ze184] P. ZeUweger, “Interactive Soul e-Level Debugging of Optimized Programs,” Research Report

CSL-84-5, IKeroxPalo Alto Research Center, Palo Alto, CA, May 1984.

[ZJ90] L. W. Zurawski, R. E. Johnson, “Debugging Optimized Code With Expected Behavior,”

Unpublished draft from University of Illinois at Urbana-Champaign Department of Computer

Science, August 1990.

A Debugging Tool for Paralleland Distributed
Programs

Andreas Weininger
Institut fir Informatik

Technische Universitat Nluncben

Orleansstr. 34

W-800() Miinchen 80

weininge@informatik.t u-muenchen.de

1 Introducticm

Debugging parallel and distributed programs is much more difficult than
debugging sequential programs. The main reaaons for this fact are the miss-
ing reproducabilit y of parallel programs, the added compl~xit y because of
more threads of control, and the great importance of the probe effect [Gai86]
because of time dependencies in parallel programs. This paper shows an ex-
ample how the problems mentioned above can be handled in a debugger for
parallel and distributed programs. This example is the debugger Source for
the parallel and distributed programming language Par Mod.

ParMod [Eic86] is a set of language constructs for parallel programming.

‘f’tmse constructs have ken combined with different sequential programming
laqqlages for instance Pascal [Eic87] or C [WSF911. (’urrcntly a new version

Imsml on Modula2 is developed, A ParMod program consists of several mod-

111(1s,A module may contmn global and local parallel proccclurcs. Tasks are
(’r(’at.d 4y asynchronous calls of parallel procedures. Tasks within a mod-
111(s rrlay communicate through sharr(l variablm where- different modules

IIlay only commu icatc through paratlmt.rrs pained to global procmlurm i.e.
i Iwr is HO sharml rmvnory hvtw(wn (lilfcr~r)t IIIodul(w. I:igure 1 ~hows WI
(Ixamplc of a snapshot of a l’garMo(l progrmrl rlln. Most inlpmatiw paralkl

programming languages arc at lt’ik.~t l~artidly siillilar to threw aspm’ts of

l’ilrMod, ‘1’hcrcforc Illost of (.hr following (OIlsi(l(’ratiot:~”ran })(: grnmalizr:l
I.1)ottvr parallrl l)r~)gralllttlitlg systrms.

I ,1

o

0

n

node (with

procedure

task

module

local disk

//
‘\\
\

\

\(jIIrD00 ‘\\,00;
\ o I&--’”

‘\ ~A /’
communication nethrk

.. ——. ——
--- —-— ..-

Figure 1: i;xamplt~ of a snapshot of a P~rMod program run

2 Design Goals

Several goals guided the design of the debugger Sounce: First, we wanted to
provide informationon a high level of abstraction, the source code Ievelof
the ParMod language. The debugger should have the same graphical user
interface for all ParMod implementations. Soutwe should allow the repro-
duction of program runs. Therefore we have chosen a trace baaed approach.
Source should provide a high degree of portability. This means

● as much hardware independence as possible. Therefore Source is a pure
software solution.

● independence of any special dialect of ParMod. Even non- ParMod

programs can be observed if they can generate the necessary trace in-
formation.

● communication and integration with other tools of the ParMod devel-
opment environment especially with the performance visualization and
analysis tool Runtimc,

Another goal was to minimize the probe effect even i!’ this is difficult to
achieve for a pure software approach. A subgoal of this was to minimize the
length of the trat-e which yielded to the principle: “What is expensive to
trace should be expensive to specify for the user”. Therefore most inter-taak
rveuts are traced by default whereas most of the intra-task events, which
should normally occur much more often, must be enabled explicitly by the
~lsrr. The following .wctions S}IOWhow wc achirwed our goals.

3 Architwture

1:1’1

trace

reads trace
file and
sends it to rii---F7
the

X11 terminal

debugger
T“~~~ local

I

\\ debugger I 1

\

/-

; ““v~ “ ‘ - l; 1

debugger

\

L — —.-

— data transfer

u
proresa

#—

[1

..___
local file

1

““’’..\\,[;dJ
[::;”:1

“-......
)

‘----- --- ------ ‘

control flow like sequential debuggers do, what we consider aa necessary.
How this is done is described below.

Another aspect of the design of Source is that it allows the integra-
tion with other tools of our parallel programming environment like the per-
formance measurement and visualization tool Rudime. This is achieved
through a common trace file format. The same trace can be used in both
tools. This allows to detect a bottleneck with Rwdime, and to analyae the
program run at the location of the bottleneck in more detail with Source.

4 Tkace Generation

When a ParMod program is compiled and linked with the debug option
enabled, the compiler instruments the program for tracing certain events,
including the creation and destruction of tasks, the entering and leaving of
critical sections, and simihw coIrlll~[]l~i(’atioI] and synchronization oriented
events. C)verall there are about 40 dif~(wmt events of this kind, Additionally,
the programmer may specify trarr twwntNwith the following expression:
trace (ezprmsion 1) if (exprrssiong)

TIM Par Mod. compiler gonrratw+ codP from this t’xpression which will
write the value and an idcntificatit)ll of r~prrs.~ionf in the trace when ez-
prrssiorag is true, ‘[’hr vhlur 0[this f’xprrwion is the vnluc of r~prmmionl in-
thymdent of the wdut’ of r.rprr,wioni). ‘[’IN’purpose of r.rprr.wiong is mainly

lo Iitnit the size of thv trtw. ‘if (r.rprr.~lwion2)’ rmi II(’omitted. ‘[’his i~
villlivalrnt to ‘if (1)’. rq)rr.wion I Illuy i+) tw onlittml, ‘1’twn trace n]my
Imly h’ 11A i[l a ponititm whrrv it slliltrilwllt i~ idlowml mild only tlm rurrtmt

Iilio nlli]ilmr is writt,wl ill Itw tr;ur, ‘1’lw l~llrl~(w of tl~i~ is to SW Illtm posi-
t i~~ils iii thr Im)grtin] run WIWIItlw l)r(~glilili is vi~llnlizrtl. A ~tlitnl)h’ oxtmnd

l“(’l~rt’s~lltlatiol) of” rrprr.wlotl / is ~lwllli wf fr~MIIIhv lylM’ ~]f rq~rr.wioll 1. ‘1’hifi
is ;III a(lvmt,ngr of tk li]trgr~tiol) (J Illr Ir;lfx’ sllilrilw[lt ill tlm progrnllln)il)g
liIIIKIIagr PnrMod.

“1’111*f[dl{)wiltg f*xiuIIl)lrN ~h~~wlltnv I Ilix ((~ll~trllct f’;m Iw Ilsml.

I’.’ftllllpw.w

%. But the main re~on waa not to reduce the size of the trace but to
reduce the probe effect. This is achieved since the costs for compressing at
runtime ar~ significantly lower than the i/o coats for writing 4 times more
trace information.

5 Visualization

.%urce presents the user a global Snapshot of the program on the screen, The
user can move forward and backward in a program run from one snapshot
to the other with a step size to be set. Source visualizes every t,~sk in a
separate window, Thr hcafl lint! of each titsk win(iow ~hows inform, ~m for
the identification of the task (module, procedure, task number, caller) and
about the current status of the task. The rest of a task window is divided
into two parts:

● a possibly empty subwindow which shows thr values of traced expmls-
sions which arc valid in the current snupshot, and

● a ~ubwindow which shows tlw sourer code with the currtmt line high-
Iighltxl.

‘, *

6 Comparison with other approaches

Other debuggers for parallel and distributed programs have been aescribed
for instance in [ACM91] and [ACM88]. Soume differs from moat of these
approaches by the possibility to move forward and backward in a program,
by the integration with the other monitoring tools through a common trace
format and the ability to inspect variables in a trace based tool.

7 Current status and future work

Currently the modifications necessary for online-debugging in the debugger
Source are completed. The tracing in the workstation implementation of
ParMod-Cwill be finishedat the end of 199”. The implementation of a
stand-alo.~e reproduction system has just started.

We will use the debugging tools in our parallel programming course and
for development of software systems which are implemented in ParMod-C.
This includes a parallel databasr system am-l recursive numerical algorithms.

References

[.+CM88] ACM ,$IGPLA N tlnd ,S1(;O1).S Workshop on Parallel and lli,~-
tribuicd Debugging, Mii(lhl, Wisconsin, M&y 5-6 1!)88.

[:1(‘M!)l] ACM SIGPLA N tad .5’l(J’OP.5 Workshop on Parallrl and Dia-
bibuhf Debugging, !iimh Cruti, (.~alifornia, May 20-21 1991.

[Eic87]

[FZt39]

[Gai86]

[M&91]

[Wei88]

Stefan Eichholz, Parallel programming with ParMod. In Proceed-
ings of the 1987 International Conference on Parallel Processing,

pages 37’7-380. Pennsylvania State University Press, May 1987,

M. Friedrich and J. Zeiler. Simulation of hardware and multitask-
ing for the parallel programming language ParMod. Mircoprocess-
ing and Microprogramming, 1989.

Jason Gait. A probe effect in concurrent programs. Software -

Practice and Experience, 16(3):225-233, March 1986.

Wolfgang Mii.sel. Online- Debugging von verteilten ParMod-
Programmed. Llaster’s thesis, Institut fur [nformatik, Technische

Universitat Munchen, May 1991.

A. Weininger. Entwurf und Implernentierung von Testhilfen fiir

ParMod-Programmt’, Master’s thesis, Institut fiir Informatik,
Technische (Jniversitfit Nliiuchen, December 1988.

[WSF91] Andrea~ Weiningtlr. ‘1’lltmlas !+hnekenburger, and Michael

Friwlrich, Parallel ,m~] (listrib~ltmi programming with l’arMod-
(;. In H.P. Zirlla, wlitor, I.tf(urc ,Yotes in (’ompuier ,f’cience ,59f,

l)arall~l (’omputtny, L’lr+t 11//crl/ationul .4 (’})(1 (.”’onfe.rence, pages

115 126, Salzt)urg, ()(ti)iJtJr/N(~v(llll}>(*r 1!]!)1. Springer,

!., ,

Analyzing ‘llaces of Parallel Programs Containing
Semaphore Synchronization

D. P. Helmbold, C. E. McDowell, T. Haiuing

September 1, 1992

Abstract

One important kind of correctness and performance debugging tool for parallel
programs determines and presents temporal ordering relationship betwem the vari-
ous synchronization operations in the program. The particular ordering relationship
we study is the “always happens before” relationship for arbitrary programs using
semaphore synchronization. Our analysis is based on an execution trace of the pro
gram rather than the program itself. We have previously published a polynomial time
conservative approximation of the ‘always happens before” relationship. Determining
the exact “always happens before” relationship is intractable (cGNP Hard).

We built a random program generator and applied our algorithm to the random
programs it generated. Our algorithm’s results were compared with the partial orders
produced by an exponential time brute force algorithm which appears practical only
for the relatively small programs generated. This process quickly identified traces
where our algorithm failed to find some of the “always happens before” orderings. The
findings from these experiments and the resulting modifications to our algorithm are
dwwribed in this paper.

1 Introduction

I

1,, ;

loops) [NG92]. On the other hand, undecidability issues arise when arbitrary programs are
considered. We have been studying this problem for arbitrary programs using semaphore
synchronization, We avoid the undecidability problems by basing our analysis on a trace
of the program rather than the program itself. Even with this restriction the problem is
intractable (co-NP Hard), so we settle for a polynomial time conservative approximation of
the ‘always happens before” relationship.

One possible application of the ‘always happens before” relationship is the detection of
data races. If all accesses to a shared variable are ordered by the “always happens before”
relationship then there is no race on the variable. Our conservative approximation of the
“always happens before” relationship leads to the detection oi more rams than can occur,
but guarantees the detection of every race that did occur in the execution of the program
that was analyzed.

Care must be taken when generalizing from a trace to the entire program. One important
situation where our trace results can be generalized is when we detect that there are no data
races in the trace. This means that there are also no data races in the program (when
executed with the same input),

In [HMWar] we described our baaic approach. That algorithm takes an execution trace
and produces a partial order representing the temporal orderings that always hold for the
given program on the given input with two limitations:

1. It may fail to indicate that two events are ordered when they must always occur in a
particular order (i.e. it is a conservative under-approximation of the ‘always happens
before” relationship).

2. It may indicate that event el “always happens before” event e2 when there is a radi-
cally different execution where ez happens before el. When this happens the radical
difference between the executions is caused (directly or indirectly) by some other race

in the program that will be detected by our algorithms, (I.e. if we report there are no
races then there are none, but we Inay not report all of the races.)

othrr researchers are pursuing this proldem from the other cud (L*.g. [Nh191]). Giww

a sot of potrntial rarcs (w rx]ight ht. rrportcd by our analysis) their tcl.hlliques idmt.ify a
slllm’t of the races that that ran actl]ally occur. Wt: hclicvc t,hcse to Ix’ [:c~[llpletll(:lltary

a~)proache~ and are continuing tu rt:[inc our algorithms to reduce the above Iilllitatiom.
[II ordvr to refine our algorithlll it Ww ntwrwmry to determine when it failed (i.e. find il

I)rf)gralll and all cxeclltim] trwv tx}tltailling two twmts (II aud e~ such that (JI happms ht:forr
f ~ ill rvrry rxecution of t.hc progral]] ill wtlirh tlwy both occur and o~lr idgoritllnl ill(li(’atvs
II];LIc1 illl(l r~ arc unor~lrrml). (;iv(”t]Illt’ Iilllitd A of “r(’al” prograrn~ available to us in ttw

Ijrt)griltllltlit]g Imlguagr wr (’lirrrlltly slll)l)~)rt (IIIM I)ariilh’l I:ortran) our idgOritlllll Iwvrr fililS

(it’, if Iin(ls t’Xil(”tl~’ ll]ost” ord(~riugs tll;kt 1 J(I for all (’xm.lltiotls giww a particular inpllt,), \Vv

Illf’rrforo hlii]t it rilll(k)fll ~)ll)grillll ~ml(’rill~)r ;Ultl llw’~1ollr nlgorithll) on I. IN’rilll(lolll l)rogrilllls

it gf’tlf’r;llf’fl, ollr ,Ilgorif 11111’sr(villlls wmt’ ctjrl)parwl with Itm I)artiid or(lwv+ I)rodll{’v(l l~y

iIII t’x~)(mt’llt.i;tltiltw “t)rlltt’ ft)r((’” dlg(~ritlllll wllirll ilpl)t’iit% I)rtactic;ll only for Ih(’ rrl;~tivt’l,v

‘). .

‘) H

small programs generated. This process quickly ident ifiecl traces where our algorithm failed
to find some of the “always happens before” orderings. These experimental results have lead
to considerable modifications to our algorithms.

2 Overview of the AJ.gorithm

Our algorithms use vector timestarnps [Fk!W! for each event tc :epresent the partial order.
We call a partial order safe if it contains a proper subse: of the edgm in the ‘always happens
before” ordering. We first compute a very conservative safe partial order from an execution
trace and then attempt to insert new edges into this safe partial order while maintaining the
safemss property. Edges are inserted into the partial order by manipulating the timestamps
assigned to the events,

We only consider synchronization using counting semaphores with the two semaphore
operations signal and waitl. To compute the initial safe partial order we assume that any
signal event could have been the signal that releases any wait. our previous algorithm for
inserting additional edges was based upon the following observations:

Observation 1 1’ some wait event eW on semaphore A is known to follow n other waits
on semaphore A (given the safe partial order already computed) then we know that eW must

follow n + 1 signal events on semaphore A. Thus additimal edges can be inserted into the
partial order by increasing the (vector) timestamp for eW so that each component is at least

as big as the comwponding components in n + 1 of the timestamps for the signal events on
semaphore A.

Observation 2 If one of the n + 1 signals, call it e ,, needed in observation 1 is known to
be preceded by an additional wait event on semaphore A that is not one of the n wait events
known to precede event CW, then n + 2 signals occur before eW whenever e. occurs before eW.

‘[’his second observation implies that n + 1 signals other than e, occur betbre eW. [n the
program of Figure 1, the 5’1 rvrnt in tzwk D corresponds to the e, cvcmt in Observation 2.

Wt: rail this phenomenon shaifowing, ~~ the ‘shadow” ciut by the prccedir.g wait prevents

r~ from satisfying the signals nemlexl by rW.
our study of ranclolil prcqyams }1iL9motivated changes in the algorithuls so that tllcy

~’xploit the following additional ohscrvat.ions:

1,(1

hak A MB ‘hak C Task D

(s)1

~ Arcs implied by Observation 1 ‘f
--’ Arcs implied by Observation 2

Figure 1: An Example of Obaewations 1 and 2. Note that the program can deadlock with
Task D waiting on semaphore1.

Taak A

..5(wo

./‘<
()SI

“ - ...

f

Task B Tack C

.. . ~ hpudenrk find by kuLe flmwMd a@dtk

Dfpmdenrire filundhy h’rweflmwonly

Observations 1 and 3 lead to what could be called first order inferences. A par ‘-!cularevent
must be preceded by a certain number of wait events on various semaphores and therefore
the event in question must be preceded by as many signals as there are waits preceding it.
Shadowing is a second order inference, i.e. if signal e, happens before wtit eW then we also
need additional signals for the waits that precede e, (and have not already been accounted
for because they also precede eW). Our next observation is a second-order extension of
Observation 3, somewhat like shadowing is a second-order extension of Observation 1.

Observation 4 1/ some signal event e, is going LO help satisfy the signals needed /or wait
event eu, then eW W-ll also have to follow any signaLs needed by wait events that precede e,.

This can be seen best by the example shown in F,gure 3.

Task A Task B Task C Task D

. .> Dependencies found by brute force only

~ Dependencies found by brute force and by AIgorltlun

Figure 3: Example motivating observation 4. Events labeled e, and eW correspond to those

in the observation.

This chaining effect (the execution needs n signals but one of those signals needs m more

signals) can be repeated arbitrarily and I;igllre 4 givm ail example that takes this chaining

clr~ct one step further. Our goal w~q to capture this chaining in a recursive algorithm that

can lx! allowed to recurse as deep M tin-m will allow. ‘1’hc algorithm Imromcs polynomial
(.an(l mmservative) when the recursion is limited to a fixed bound. ‘1’twcomplete algorilhm

i~ givm) in the appendix.

3 Testing Rand(lm TYaces

5

,..

Task A Task B Task C

$s, ,. . .

S(-J

~ Depmdancia fouod by bruta forcQand dcoAIhm

. . > De~ndmnck foundby bmm fome only

Figure 4: Example requiring two applications of observation 4.

A trace of an execution is simply a totally ordered list of signal and wait events together
with an indication of which task performed each event, As events are entered in the trace
only when the associated operation completes, every prefix of the trace contains at least as

many signal events on each semaphore aa wait events.

The “program” corresponding to the trace can bc viewed M in Figures 1, 2, 3, and 4.
There the events arc grouped in vertical lists by task. Within each vertical list the events
appear in the same order as they occurred in the trace. A “state” of the program corresponds
to selecting a (possibly mnpty) prt=frxof each vertical list. LJsuaily some program states are
unreachable by any execution. For example, in Figure 4 the state where Tasks A and 1] have
rxecuted no events hut ‘1’&~kC hAS rxccuted its first event (WI) is unreacllah]c M the wait
[Oiillllot complete until after ~~~liil)ll~re I haa been tiignaled.

The brute force anal yzer ptwform~ a depth ”first search on the progrmn ‘N(cxpommtially
li~rg(*) state space to discover all of Llw rvachablc st ates, If went c1 hau been executed in {wry
r(wrhablc state where rwmt ri has lwn rxm.utwl thrn t.hc hrutc force analyzer indicntrrr that
fl “mllst happen twfore” r~. l’rrforming thi~ tmt for mch pair of mmntn RIIOWNthr I)rutr
[or(.(*allalyzm to umputp [INS“IIIIISt happrn tAm’) rrlfktiomhip for fotw‘Lprogrnnl”.

[f a rwd progrml [naktw ~ol~ditiolli~l” I)ram.hm t lint n)uld lm a{~ml.d I)y ram+, ttm tlw
IIif* I)rlltt’ forcr andyzrr mBy ovm’stilu;~tr III(. II IUSt hppfm hcforr” r(’lntiolidlil)l our

;~lg[)rit.hlns also havr this drawlm[. k il~ II()(CVIin tlw intro(luctioll. Ilowcvrr, vvmi thr tnft’rrsti

illill(’(1 “lllll!it hllpp~ll lmfor~w rclat itmshil) 4dl(JwNI.IIP ratv’ dfwtiug ttw [Sfm(litioi]al lw~ncll 10
II(*ll;~ggml. ollr cxperitr]crit:i t’[)rlt”f’rltril(f’ i)rl l]~)wi~ftcv] tlw “rllmrt happfw twbrr” rrlatiomhip
(orlll)llt(d I)y ollr otlmr algorithrl~s rlli~l.rlw llliit rdltlrrml I)y thr t~rutr (orm nrlnlyzvr.

‘1’hc random tram gmmrmt{)r lIWWtIw pnrwlwtrrs hlnx’i’a.nks, hlaxSrrrlnl)ll~)r~*~, arltl

Sillriljvt’r)ts, IJor oiw’h trwv pirk N~lrr]’1’ilxkw (}wtww~ll Y aIIfl Mnx’1’mkN)nr~flNllrllSrlilnl)l~lJr(*s

(I]t’lworrl I ;lrl~l YlaxS4’rtl~l)llor4’N) Ilrlif(mllly at rnrl(lmll. ()rwt’ thwv vnlmw Illlv(’ I}mw A,

111(sgf”llf ’riitor {IxwllltIs ttw If)(q) irl I;igllrf’ 5 h) (}lltpllt lhv lr;wr f) f a r)orl I}hwkirlg VN(*(’111i~m.

while less than Num Events generated do
select T randomly between 1 *nd NumTasks
select sem randomly between 1 and NumSemaphores
if more signals than waits have been generated for

then
flip a coin
if heads then output: W,.~ by task T
if tails then output: S,mm by task T

else
output: $Lbem by task T

end while

Yem

L —

Figure 5: Random program generator.

of eventn original depth 1 depth 2 depth 3 tctal # of traces

30 54 3 0.26 0.05 5726
35 !58 3,7 1.4 1,1 840

40 5!) :1.4 0.75 0.56 1070._ .._

‘1’able 1: Percentage of random triicos that failed to find at least o[w edge when compared to
the actual “must happen b~forc” pwrtial ordm. Results ~re given for the original algorithm
and for our mvisml

At, tlw tinm of

I ,,,

References

[Fid88] C. J. Fidge. Partial orders for parallel debugging. In F%c. Workshop on Pamllel
and Wtnhdcd Debugging, pages 183-194, May 1988.

[HkfWar] l). P. He!mbold, C. E. McDowell, and J. Z. Wang. Determining possible event
orders by analyzing sequential traces. IEEE tinsactiona on Pamllel azd Dia-
h+kkd Systems, to appear. Also UCSC Tech. Rep. UCSC-CRL-91-36.

[hfat88] F. Mattern. Virtual time and global Etatea of distributed systems. In M. Coanard,
editor, Proceedings of Panallel and Dtitributed Algorithms, 1988.

[NG921 R. H. B. Netzer and S. Ghoah. Efficient race condition detection for shared-
meruory programs with Pint/Wait synchronization. [n l?mc. fntemiational Con/,
on Parallel Processing, 1992,

[NM91] R. H. B. Netzer and B. P. Miller, improving the accuracy of data race detection.

SIGPLAfV ~Voticm (Proc. PPOfVj, 26(7):133-144, 1991.

A Algorithm Details

Before each trace is analyzed, every event contained in that trace is assigned a vector tinms-
tamp. A timestamp contains onc ent:y for each taak. For a timestamp r, r[i] is the numbrr
of rveuts completed by tazk l; at the time the event amociatwl with T completed, When
properly maintained, ordered and unordrrrd went pairs ran can easily be distinguishcvt hy
comparing their time vectors.

A n wmnt r: with timcstamp r(r) prtwwlw snot her rwmt # with t immtamp r(r’) in tlw

partitd mlrr if aud only if fwry mml)(mrnt Ofr(~) i~ ICSHMthan or quM Lo the c’{~rrt’~l~oll(!illg
(“f.Jlll~)(JIl(’Ilt 0[r[t?’). I’knts e and c’ nrr uurclatwl in lhe partial order when buth sorer
l’{lllll)OllPlltof T[t) iY #W!dCr thrill tht’ (WIWpodill~ Wllp[)llcllt Of T(#), {Uld MMll[!(Otht!r)

t’lmlp(mmlt of r(r’) is greater than ttw [.[)rrc’~[)oll(lillg conlponcnt in T(C),

At present, we use three algorithms to build the partial orders which approximate the
ordering properties of events in a program trace. The first extracts the corresponding partial
order from the eveut trace. The second modifies this partial order to ensure that it is valid
for all possible executions in which the same events occur. The third usea the observations
presented earlier in this paper to add back some ordering arcs which still are present in all
executions.

Before defining our algorithms it is necessary to define a few common functions that we
employ:

Definition 2 For my m time vectors Tl,. ... r~ OJ 2“

● Rlfik(q,.... r~), k > 0 is fhe vector of 2“ whose tth component is k k’h smallest

element in the collection rI [2], ~z[i], ~~[i],

● mm?(qj , . . . r~) is the vector in Zn whose ith cwnpcnenl is max(rl[i], rm[i]).

Conventionally, we define FM(7I,. .,, Tm) /0 be 0, the d-zero vector.

As an example, ~~([1,2], [1,3], [2,4], [2,5], [3,2]) is [2,3].
We also employ two special types of timestamps:

Definition 3 Given an event e. prrformed by task 7’i in a tmce, let T~(e) be the time uec-
tor containing the local t vent count for e (one more than the number of events prcuiousl~

prrformed by T, ic the tram) in the ith component and :eroa elsewhere.

Definition 4 (Jiven an event (Iprrformrd by task T, in a trace, let CP denote the previous

rrrnl prrformrd by 7’, in that imcc (or (he all zero urctor if no such an event ezid.q),

!)

1, ‘,

Jgorithm 1 (Rewind)

Repeat the following procedure until no further changes are possible.

for each event e in the trace
if e is a Wait event on eemaphore S,

letef. j. e: be all the Signal events on S;

aet v, = RR(r(e;),... ,r(ei));

else

set v. = O, the all zero vector;
end ifi
8et r(e) = m(r(c~), r~(c), u,);

end for;

Unfortunately, the newly established safe order relation imtoo conservative because mme
“must happen before’ ordering arcs are deleted aa a part of the rewind procedure. At this
point we apply an algorithm bawd on the obmrvatione described in Section 2.

The Expand algorithm (Algorithm 2) cycle~ through the entire timeatamp representation
of the trace, using a routine callml modify to advance the timestamps of Wait events hmml

on Observntion 4.

lt CiCMWthis by considering the srt of Signal evcuts, R, and the *t of Wait events, 1+’, th~t

rxist in relation to two t ilmwtamps: T,n hnd r(ii). Timestamp r,n is an amalganlahd timw-

tamp rqmmnting all the wmt~ prwiournly conmidmxl through recursive calls to mxfijy. It

will ad M the event rW in the’ rurrtmt application of Obnmmtio[l 4. l!vrnt ? fum%ion~ u
ttw Signal t’, from Oimmwtim 4. ‘[’III’ quantity drpth indicntes the’ numtmr of timm thmt

olwrvntion 4 i~ to bc rorursivdy applwd.
f:um.tion nlodi~y builds up il sot, ‘1’, of virtual ti:mwtamp~ rrturnml hy calling modify

rm.ursivrly [m thv mwnt~ in l{, 11 tlwll mllpioys otmorv~tion X, t~killg lhc A’h(’l]llll~(]llcllt-wis(’

Illillilmllll of ‘/’ (whfw k is ttw uumtmr of W/iit c’vmtH in W) to (Idvrnlim t)w wwlitwt tim(’
I hid ? rim orrur, [t thw r(!!mw ?’:1Iww tinm+tmp ill th~’ qlmllity ~rn.

l:imlly, thr main loop tnkrs I.hc- tilmwt~ullp r(”turmd I}y n~(dif~ for 4Lspwilir W/lit rvrnt,
;IIN1Ilsfw ~ to ronlhilm it with r(rl’) nnfl r~(r)m

10

Algorithm 2 (Rmmivm Expsad):

k each ewnt # in the true
ifeisa Wuteventan~S,

7(e) - rndify(r(e),r(e), e, A#h);
mt r(e)= ~(r(e),7(#),F(e));

else
at r(e)= lllIR(r(e),7(#));

end ifi
end&

RUlctial mafi~y(qm-, rim,& Ci@):
let r- - r(e)
if &@h = O

raturll(rm);
end ifi
for eseb semaphoreu,

Iet?’=t:
let W(u) = {e. : c. is a Wut event cm a, and

rither r(ew) ~ rm or r(eW) ~ r(d)};
let l?(u) = {r, : r, is a Signal event on a,

r(r,) ~ r,~ and r(e,) < ~m);

for r-h ●s in It,
r = IIKX(r,m,r(?));
7’ = {mufif#(~##, r, r,, (depth -1))} UT:

●m! far:
Irt k =1 W(m) 1;

let r, = m&(’f’);

I* rm = llTSX(r~, r,);
mid for;
mturn(r-);

,. ..—. -. ..-. . - --— .- ----- -., ----- .

II

Compile-time Support for 13~cient Data Race Detection
in Shared-Memory Parallel Programs

John Mellor-Crummey”

Center for Rewa.rchon Parallel Computation
Rice University

Houston, TX 77251-1892
johnmc@rice,edu

Abstract

To date, both on-thdly methods
racea during program executions

for detecting data
and pat-mortem

methods for anafyzing traca of program executions
have made little uae of compiktirne analyais to reduce
the number of acceam that must be examined, In
this paper we dexcribe program mrmlynisfor thi~ pur-
pose that haa been implemented M part of a debug-
ging system for the ParaSeope Programming Environ-
ment, To demonstrate the effecti~eneua of our analysis
techniques, we pr~nt rneaauremento that compare the
overhead of race detection with three levels of compile
time mndynis ranging from little analyoio tO nggreaaive
;ntrrprocerlural analyoio. Since the monitoring over-
tmnd of run-time techniques for data rare detection ie
high, irnpmvelncnts achieved using compile-time sup.
l~(wt will play an important role in making run.time
twhnqwu for dcterting data racea practical,

I Introduction

log to iaolata d~ta rata [2, 8, 17], or (3) on-the-
fiy andyoti — augmentation of a program to diWect
and report data racu M they occur during its execu-
tion (11, 12, 15, 16, 18, 19, 20],

Static analyais techniques rely on claaaical program
dependence analysio and an analyaia of a program’s con-
currency structure to determine when two referencm
may potentially be involved in ● data race, Static tech-
niques are inherently conservative, which often leads
to reporto of data rac~ that could never occur during
execution. Experience with static analysis toolshan
shown that the number of fak paitivea reported us-
ing theee techniques is too high for programmers to rrdy
exclusively on otatic methods for isolating dntR rmw.
(“krnbining static analynin with symbolic execution of-
fero hope for reducing reports of infeasible r~cea [M].

Peat-rnortem techniques for detecting datn rm:rohnvc
the advnntage that they can limit reports to ftwnihlr
racm. iiowever, to guarantee that only fwunhk rncm
are reported, exhmmtive execution trace logn we Iwmv

m~ry, ‘lh nizn of riuch execution Iqn in n scrioun flrnw-
Ijm-kfor thear m?thoda OIIICFthe Iogn can hr en~)rnltlll~
for pmdlel pro~rnmrrthat mwrute for nmrr tlIfIIIn Irlv
i~l nnmunl of tinw. A promiming rdtrrn~tlvr II) purr
pfml-lnortmll ~ndy~in in n hyhrid ni)prlmch Ihnt uww
nldwrvl~tml logo c~)l)thiulug tmly nyllt’llrf)illzntit)tl Iufl)r
IIIRIIC)IIL(JWllPUt@ ~UINI’Mlt4WWl lM&’rlll~H. %’h l~r~h”r

ingl ran he unrd in cfnlj~lncti(m with mUlJWI~IIrIIl stntir

nnnlynis iw on-thr-lly Itl(mitlring t{I rrl)~]rt rnrl~ CIIIIIII

f Ic)nn

on the-fly trrhni(lurn Iilnintnin nll(litiinliil ~lnlr III

({~rfilmliim [Illring n Progrnlll’m oxrculi,jll h, IIrt.rrtlllllr

whrn c~mlilrting nccrwnmto N rnhnrrllv.nrll~l)lrIlxw. !N
r~lrreil ‘1’h~prlnclpnl drnwllnrk of (m thr Ily IIWIIIIIIIIIW
i- thnt in t!w grurvnl (’w, thr qIIWO nll~l tIIIII*,wvrlw;l!l
f)f Ilrlrrling rrwrw~lllrlll~ n l)rt)grnlll’~I.xIv’llLIIIllrAIIIw
rnl)rlll(mn,

tt)r (In ltw Ily terhniqurn tt) IWCIIIIWwI{lrl.vnr(t.~llt’11,
LhrllRlmrs rmii tilllr twerhvrul II IIIMI. III’ rr,lll~ fill III ~1

Ivvrl t tlnl I)r[)grmlltlwrmrnll I,)hcrnlr III Ilrn!l l,r hlIII\$II

1,. ,1

WORKSHOP DRAFT 9 October 1992

on-tiwfly techniques applicable to programs with an
unrestricted concurrency structure have asymptotic,
worut-c~ space overhead that includes a term propor-
tional VT, where V is the number of shared variableo
and T is the maximum logical concurrency in the pro-
gram execution [11]. However, when the structure of
logical concurrency is restricted to that achievable with
closed, neated fork-join constructs (e.g., nated parallel
100pa), the worst-caaeMymptotic -pace overhead can be
reduced to 0(VN), where N ia the mmimum dynamic
nating depth of parallel constructs, and the asymptotic
time for Mating if a particular ace- participate in a
data race can be reduced to O(N) [15]. These tighter
boundrroffer the promiM of efilcient on-thdly detection
of data rac~ for this restricted cl- of program.

In addition to having aaymptoticdly e!llcient meth-
ods for testing whether a variable accen u involved in
a Ma race, for on-thdl y techniqu- to be practical,
the number of acceruicheckrrto teat for data racea dur-
ing a program’s execution must be minimized, in this
paper we focus on a compiletime strategy for automat-
ically instrumenting a program to detect data racea at
run time. Our instrumentation system, implemented M
a component of the Rice University’s ParaScope Prm
grarnming Environment, exploitn mphisticated otatic
analyais to reduce the number of data race accem checks
added to programs.

Section 2 briefly describer the I%rascope eyetem and
prcwid(w coutext for the implementation. sections 3.1-
:1.3dmwrihe three approached to data race instrumenta-
I.mnthat rely on incrending amounts of program analy -

siri to rmlucc the number of accrna checks added to a prw
griwu. %=ction4 drwcribea rmme preliminary rxperimem
Iid rrsul~s thmt crrmparr ttw Wcctivenrru of the thrw
{Ilthrlll inntrumcntatiorr Nlrritegiea. Finally, oection 5
t~riotly(nltlinrw our plmmrfor rnhruwing the inntrumrm-
I;II11111yystrtil t[) exploit wlditiond kirrdaof analysin to
flirthrr prune the uunlhrr of w-mea chwks mdrledt(, prf~
ur.~llw

2 ParaScope Environment

Through careful design, the compilation procew in
ParaScope preserves separate compilation of procedures
to a large extent. Tools in the environment cooperate
to minimize the number of times a procedure needs to
be examined during compilation. in general, the exist-
ing compilation system u= the following 3-phaae ap
preach [7, 9, 13):

1.

2.

3.

Local Armlysis. At the end of an editing eesaion,
ParaScope calculate and storm summary informa-
tion concerning all local interprocedural effects for
each procedure. This information includee details
on call mites, formal parameters, scalar and array
section uaea and definitiona, local constantu, aym-
bolics, 100pa and index variablea. Since the ir,itial
summary information for each procedure doea not
depend on interprocedural effects, it only needs to
be co!lected after an editing aeaaion, ●ven if the prw
gram is compiled multip:s times or if the procedure
is part of 9everal programeo

bterprocedural Propagation. The compiler
collects local eummary information from each pro-
cedure in the program to build an augmented call
gmph containing loop information [14]. It then
propagata the initial information on the call graph
to compute interprocedurai sohitiono.

Interprocedural Code Gcmerdhm. The tom.
piler JirFcte compilation of all prrxcdurm in ltw
I)rogirilrl hamd 011 the rrwults of i[ltcrl)rocctlllriil
andyrrirn,

WORKSHOP DRAFT

Fortrart ASTO. Thie system aervee M the framework
for the data race instrumentation system that we have
constructed M part of ParaScope. The data race instru-

mentation system uses the transformation aubayrrtem to

transform Fortran ASTS, adding calla to run-time sup
port routinea that enable a program kr detect data rac~
during ita own execution,

The focus of the ParaScope data race instrumen-
tation system is to detect data racea that ark dur-
ing execution of parallel 100pa. This restriction in the
current implementation of the inatrumentation system
stems from the lack of full support in ParaScope for
heterogenmus parallelism that ariam from Fortran par-
allel section conatructa (analogous to the more familiar
cobegin-coend construct of other parallel hnguages).

Whereever thin deficiency of the analyaia al%cts the
instrumentation system, the term pamllef loop will be
used in place of the term parallel conutrucf in order to
remain faithful to the actu~ implementation.

To prepare a program for data race instrumentation,
the following sequence of trrtneformationa are applied
to put the code in a canonical form:

●

●

●

●

Transform logical 1F rrtatementa into block IF
statements ao that instrumentation can be readily
tw added to the consequent au neceaaary.

‘hanoform each ELSEiF construct into an lF-
THEN construct nested inside an ELSE con-
struct. [f any acceaa in the ELSEIF guard needs
instrumentation, the syrwmn must have a place to
IIIStIrL the instrutnentation so that the acccu check
grts rxecuted 1~ the guard will be executed,

lloirtt all function invocations out of suhmript ex-
prwwions. Sinct nutmcript rxpraaicms are dupli-
rntml Into acccaa check code, nubrtcriptexpremiona
III II!IL he Sillt--rlkt frer.

Mow”(b~rhsf,;tlonwnl Inbd to a (~ON’ri N (~~ thmt

9 October 19!32

acceaa checko — calls to the race detection rlln-time

library READCHECK or WRITECHECh opwa-
tiom that teat if an acc~ participate in a data
race,

acc~ history declarations — each variable that
may be involved in a data race ia allocated storage
for an accesa history in which information is stored
about the threads that acceamthe variable, and

● acc~ hiskry initialization and finalization -—ac-
cess histori~ for all local variablea must be initial-

ized upon procedure entry and finalized before the
procedure returns or hal~.

The next threeaectiorudescribe data race instrumenta-
tion strategies that rely on increming levels of program
analynis.

S. 1 Basic Strategy

Without any oophiaticated analysis, data race instru-
mentation must be very corwervative. Each procedure
must aaaume that it is called in the scope of a parallel
construct, Therefore, references to its formal pararn-
etera (which are passed by reference in Fortran) and
global variablea must be instrumented since they could
conflict with other acc~ made in the context of MI
enclosing parallel construct. The system rnu~t alw add

acceea checks for references to local variables that IJr-
cur inside the ucope of a parallel conotruct in the pro-
cedure. This is neceaaary since without further analyms
one cannot be certain that the vnriable is not the target
of conflicting, concurrent acceasea within the scopr of
~hc parallel construct,

ltvcn if a prow-lure containrr no parallrl ron~tructsl
nil local variables premed M actual argunwnt~ 10 luwr-
(Irlirw(l prm-mlurrwftlurtthaw mmw hiritory ~torng~~nJ-
Iucntrd in thr mrrcnt IWOIMrmd rehmwcrn to that ~tor-
,agr Inu8t hc pwd 10 mch ctdled prormlurr HIIICCIAIIy
rnllrd prormlurc rould contain R pnrrdlrl rotmtrurt III

sitle of whir+ it rrferrrtcm il.~ nrgumrnt~. L(wrd vnrl

nhkn not pmwrd to crdlrd prorrdurrn IMWI n~~t Iw III

*lrunwntml nor IIIIW wcfwt hi~t(wy ~l,~mn~rnll~wnl.wlII’
no pnrallrl conntrurts Iwr prwumt il) thr cllrrvnl, pr(w{,.
(Iurr.

Varinhlr rrferrllrrn paruwd 10 Illlrilmlc fuIIrl.l~IIIM r,’

(Illirr nlwri~l llnn~lling, lntrinHir [llllcl.i~)n~ III Pf~rl r;lll

r~ntl, hut nrvrr lll~~~lifytheir nrEunwulM Siuw III(.1~~1~1
II’Sf~finst.rlnnic fllllrtltms mrr hi~t Ittxl,r{[irlortlml I)y IIIIN
*} MWII, In S41111rrnfien, lhr nymlI.tIIIIIIIM1ml(l lll~lrlllllrl~
tnt,l~)ll mt thr [JIIIII1 ~)f rrdl tt~ rrlhv”t Ihjtl, thr Iltlrllmll’

rrm[ln II,R nrgullwlltm III Imrl.l,ulnr, A It IEA I)(’11 II(‘h

fitr m vnrll\l)lr roft’rf’11(.e l,n.wiril 1,) 1111Illfrlllslc 11111<1t,~

IN I,Iw1 nt Ihr lMIlllt !tf t’nll If

‘1

WORKSHOP DRAFT 9 October 1!392

● the variable in a formal parameter or a global vari-
able, or

● the variable is a local variable and the call to the
intrinsic is inaide the scope of a parallel construct
in the current procedure.

For each statement, the inatrumecttation system ac-
cumulates the set of variable references that need data
race instrumentation. If multiple array element refer-
ences in the same statement have the same wquence of
subscript expmaiorte, only one ac~ check ia needed
for all of the referent-. This ia true even if the
references are a mix of reads and m“fes — a single
URITECHBCKwillsuffice since any MCCHthat conflicts
with a read will certainly conflict with a write.

3.2 Intraprocedural Strategy

To detect all data races, not all references to ehared
variabies inaide parallel 100pa need be imtrumented. In
particular, referenca to variabl- that are not accti
by more than one thread of control do not need data
rnce instrumentation,

Data dependence analysis u a deep compiletime
analyais of program vuiables and their aubscriptu to d-
termine when two variable references may refer to the
same memory location. C!ompile-time dependence anal-
ysis computes a con=rvative superset of a program’s
run-time dependence, In ParaScope, a dependence
graph contains an edge for each data dependence, where
each node in the graph repreaenta ~ variable reference.
A drpendenc~ edge between referenc~ R, and Ra is
rarrlcri by a loop if the execution of RI in loop itcr~
tion i ran potentially acceas the same memory location
;L~ the execution of ~1 in kmp iteration j, i # ~. ~e-

pondrncm that are not carried by loops are said to be

lIIopindcpt ntfrn1,
‘1’hrw typm of rnrried datn rlependencea are impor-

tAi)t f~]r dnta rncr instrumentation. A fnc dcpenrlence

i;tlso known M flow clependenc~) eigniflea that a menl-
(jry Iocntion r~m.1during some loop iteration may he
(~v~~rwrit IVII ill R Iatcr iteration, An anfl dqwndrwcr

only for variable references that are endpoints of data
dependence.

When procedure calls are present, but no interproce-
dural information is available, conservative assumptions
are necessary to ensure correctn=. When building a
dependence graph, conservative aaaumptions must be
made about the side effecti of each procedure call. In
particular, the dependence analyzer mud assume that
each procedure call moditlea each af its actual parame-
ters (in fact, the analyzer must asume that any time a
reference to an array elrment in passed to a procedure,
the procedure modifies the whole array) and all global

variabl~, As before, acc~ checks are added for each
endpoint of a data dependence. ALso, as in the b~ic
inatrumentation strategy presented in the previous sec-

tion, each procedure must conwvatividy assume that
it is invoked from inoide a parallel construct which re-
quir~ acceaa checks for referencm to global variables
and its formal pararrretem in addition to mcces checks
at dependence endpoints,

3.3 Interprocedural Strategy

[n the instrumentation strategies presented thus far,
conservative amrmptiona are made in the presence of
procedures. At each callsite, the system must wsume
that the cnlled procedure modifies each of ~~bactual
parameters and all global variablea. Furthermore, thr
~ystem must assume that each procedure may he in-
voked from within a parallel construct.

These two amumptione lead the syetem to inwrt in-
strumentation conservatively, Interprocedural infornl~-
tion can help the instrumentation system redum lhc
amount of data rrace instrumcnta~ ion and itmrun-tinw
ovcrhend in two rninlpleways:

●

●

[fthe riy~tem knows that a procedure iH mwwr callrd

from within a parallel construct, 110 rwmw chrcks

ar~ neceaaary in the procedure for refercncm to its
formal parameters except inmifle nny parallrl ron-
structe mxrtmined in the procedurr,

If the dcpcnclenrc analyzer hris intmprorr(lur:ll

WORKSHOP DRAFT 9 October lT3n2

parameters require instrumentation, but the third does
not,

For each procedure, its finaf data race instrumenta-
tion set deecrib~ which formaf parameters and global
variabl~ require acc~ checks inside the procedure
body. However, with only the information computed
thus far, each caller must conservatively arreume that

each actual argument that it p- to a called PZOCG
dure rquira accas history storage. In the example
shown in figure 1, there is no way for the loop calling i
to know that the second parameter to f requires a.ccees
history storage but that the third doa not since these
requirements are dictated from below by h.

Which variablee require accm historiee allocated can
be computed in a single backward data.tlow paaa over
the callgraph, The initial value of the atomge alloca-
tion set for each procedure is a copy of the procedure’s
final data race instrumentation set. During a backward
datatlow p-, the storage allocation seti flow to each
procedure from all the procedures it calla (along an edge
for each callsite inaide the procedure), For each callsite,
only the variabla known to the caller are propagated
through the callsite up to the caller. The seta propa-
gated to a node along the callsite edges are unioned to
achieve the final version of the storage allocation aet for
that procedure.

After applying this analysio to the program fragment
shown in figure 1, the callsitee for f and g will know
that no access history storage is needed for x and y

respectively. Furthermore, the call interface for each
of the procedures needs to be e-panded only for the
prtrarneters that actually require acceM history storage

instead of for all variables would be the case if the basic
mnAintraprocedurml strategy,

After the ~torage allocation set is computed for each

procedure, only the top-level program is aware of all

(If the common variables that must be expanded. A

forward intmprocrdural datafiow pea is necesrmry to
gllarant.ee that cnch procedure has a consistent Mini-
Il~~rl of which vnriablee in each common blrwk need IC
ho auglnrmted with acc~ history atoragc. This pass
rroatrs a common a//ocation set for each procmhrre.

routinea are added to initialize and finalize the storage
upon entry and exit of the procedure respectively. ~om-
mon block definitions are expanded with access history

storage added for each variable in the procedure’s com-
mon allocation wt. Actual argument lists are expanded
at callsita to p- acceas history storage only for pa-
rametem in the cak’s storage allocation set. Calls to
concurrency bookkeeping routines are added only for
parallel constructs that carry a data dependence. Thus,
if a data race can never occur in the context of a paral-
lel construct, no concurrency bookkeeping is performed
at run time.

4 Preliminary Results

In order to tat the efllcacy of the compil~time analy-
sis described in the previous section it ia important to
apply the analysio to some real programs. To date, we
have preliminary raulb with two programs.

The first program, seard, implements a multi-
directional dirtwt search method for finding a Iocaf min-
imizer of an unconstrained minimization problem [22].
Search contaim four parallel loop nests (each of which
contain a call to the same evaluator function) sur-
rounded by an outer aerial loopthat teeta for conver-
gence. The second program, hck, tests the adjointncss
of a routine that computa a one-dimensional seismic
inversion (uA fot uil exploration) with its associated

adjoint code. The code contains seven parallel loop
nmts, four of which contain calls to substantial procw
dures.

Table 1 contrasts static md dynamic statistics for thr
search program. The table shows memmr= for both the
uninstrumented code and for code automatically gener-
ated by the ParsScope datm race instrumentation sys-
tem using the three differell~ data race instr(jnlelltiitloll

strategies. ‘l’he first column in the table rihows sourrc

lines comparing the size of the original ll[linstr(ll]lrllt,~,~l

prograln versus the size with each sty!o of in~tiutllrn-

tation. ‘l’he dramatic increaae in murm IiIIr count r~t-
flects the addition of access checks, mmr.urr,wry hot)k-
keeping cab, deClaratkJI’IMfor acc~ hiHtwi~’~,(“;IIIsII)
Initiahze and finalim each lordly derlwml arciw Ills.
tory, * well aa dcclarn~ion~ and (Ii+ta stI\lrmrIIh I 11:11

c(mtain inhrmalion thmt rnmthfr th i)arn..nqw l!:lla
rrw run-tlmr suppmt lll~rmy to rrpl)rt ~’rr(m I)y rr’1i.1
ing ttwrll hrnrkto thr (xigiilrd mourrr CO(ICS‘1’111*Ilrxt

two mlunmr rospmtivrly irl~lir~tr Ilf)w lllmny l{t Al)
(‘1[H(‘K mrd WRI”I’K(‘IIK(‘K calls wrrr mIIlr(l II) Ihr

pr~}grnlrl for crbch ill~l.rlllllcll lnlioll ntrmto~y (‘t)llll,;~rl’11
tu thr tmir stratrgy, thr illtt’rl~rof.r~!llrnlii}lljrlm[tl rf’

k Il,lt,)1]111-fwlhr (.OIIII)IIW(l nllrllhor (II’ ,accm~ I’111’I.H ,i~~(I

the I-Ide Ily tl’f% Sinw thr rmux~lllu~ IWI’W+Ni.111’~ks,Ir!’

l/\

9 October 1992WORKSHOP DRAFT

pualld loop i = 1, n
call i(ataiadoxtill,

●nd 100P
. . .
paralld loop i = i, n

b[i] , X[il)

cdl g(d[i] , ●[dzuiox[i]l , y[il)
●d loop

mbroutino f(fl, f2, f3)
call h(fi, f2, f3)

●nd

mbroutino g(gl, ~, g3)
call h(gl, @, g3)

●d

Figure 1: Different contexte have different instrument
tion requirements.

analysis, interprocedural analysia, md module compi-
lation,

Local Phmse

AZdescribed in ~tion 2, at the end of an editing B
sion the ParaScope editing tools reeord initial infor-
mation about a module for uae during interprocedu-

ral analysis. Before support for data race instrumen-
tation WM envisioned in ParaScope, initial information
recorded included a descriptor for each procedure spec-
ifying the nam~ and types of formal parameters, initial
,MOD and REF information for formal parameters and
common variables, callsite deacriptora including name
of the invoked procedure (or procedure variable) and

the actual argumenta. To support data race inatru-
mcntation, thie information WM reorg~iaed m that it
is not summarized at the procedure level, but rather
collected at the Icop level. Also, the information WM
fiugnmnted to contain a description of the loop neeting

structure nn:l an indication of which Ioopo are parallel.
Imop-lrvei inforrrlaLion io important for data race in-
strullmntmtion so that interprocedural analyeia can de-
trrllllnr which prf:cedura are (puaaibly transitively) ln -

v~)k~.d fronl within the context of a parallel loop.

meddion set is created for each procedure. AfLer in-

terprocedured analysis is comp]ete, this set will indicaLe
which formal pararnetera ~d global variabl~ require
access checke for references to them ineide the proce-
dure body.

The inkrprocedural analysia driver then invokea the
dependence analyzer foreach procedure using the inter-
procedural mlutiona for MOD and REF to increase the
precision of dependence information at callaites. Using
the MOD and RCF aolutiona, the dependence malyzer
identifi- when a data dependence involvee side-effecLs

of a calleite. Such dependenc~ indicate acc~ made

by the called procedure (or ita dazcendenta in the call-
graph) that may be involved in data rat- and instru-
mentation will be needed for any accesi to that variable
in the called procedure (or ite d-endants).

For each dependence endpoint at a callaite (referring
to an actual or global acc~ sa a eid~effect of the
call), the data race inetrumentation set for the pro
cedure ia augmented w indicate that -me context in
which the procedure ie called requires instrumentation
for acceaea to ● particular formal parameter or global.

When dl of the cdlaik inoide parallel Ioope in the
program has been proc-, the instrumentation zeta
are ready for datatlow propagation through the edgea
in the cdlgraph. Final valu~ for the instrumentation
setz result from forward dataflow propagation of all of
the data race inatrumentation sets along callsite edges
in the cdlgraph. At each callsite, global variablea and
variabl~ pud aa actuale are llropagaLe instrumen-

tation requiremenLa iuto the cdke. During daMlow
propagation, the instrumentation requirements flowing
to a node (i.e., procedure) from each of its callsite edges

are unioned to achieve the final veroion of the data race
instrumentation set for that procedure.

A contrived example shown in figure 1 illuntratea how
context can impow ‘Iifferent instrumentation requilc-

ments on a procedure’s formal parameters. Assume
that subroutine h modifim its first two arguments, hut
only reads the third. Interprocedurd Moll dumnlary

analyai~ will indicate that rrutxoutines f RIMIg umdify
thwr first two hrguments (via their call to h). III LIIII
context of the first loop, the l’ar&Scope dcprndrnrr ml-
alyzw cannot prcve Lhat arceasra tu a[aklox[’ 11 nr~’
independent, hut rmn prove that rrmdificmti[]l~n tu b[i]
me mdcpenderrt, Sinm the third parrillwtvr tu f ix II(>I

in f’n Mel) mt, there is no Ioop-cmrwd dqwndrIIcII it]
volving Lhiriparmrwtm. ‘1’hecontext of thin hNq~Ltlll*
rrquims inntrumentdion inmide f (ml thus h (M will)
wly for arcrsum 10 f’n Iirst formnl. in LIIOwwm(l I(M)IJ,
Ltw situ~tmu rrimilar ft~rIhr call tt~ g: [~lIly .arrrrwrwIII
ItIrStwmd rf)rmnl paratlwtrr rrquirr ill~lrllrllrllt{~ll{)ll

Aftrr llltrrl~ri~t.1’flllrnltlatalh)w l~rop~gntilm ~J(I.111.III

~Lrullwuthtl(m .wln, Inruthi h ~lrr Iirxt tin{i wvmc]u~i ll,~rlll.11

.,

WORKSHOP DRAFT 9 October 1992

static me~urea dynamic meaaures
source WC- Checks accm checks execution

Iina read write write time
uninatrumented 569 0 0 0 0 36.9
baaic 1073 70 17 111498737 15270102 602.3
intrap rcuedural 1065 68 17 100749809 15270102 552.6
interprocedural 697 4 7 23338076 15269825 247.8

Table 1: Data race instrumentation atatietics for the *arch program.

static meaaurea dynamic me-um
murce inatrumentd 8CC- m U- checkx execution
Iina loop neata read write read write time

uninstrumented 2212 (? o 0 0 0 20.4
b~ic 3961 7 234 63 7w185036 729S204 327.8
intraprocedural 3961 7 234 63 70086036 7295204 327.1
interprocedural 2518 3 14 20 15781629 41m 91.1

Table 2: Data race instrumentation statistiu for the buck program.

all in, the computational kernel, the efktive reduction
of the dynamic acc~ checks u not nearly aa dramatic.
[n comparison !O the basic etrategy, the interprocedu-
ral strategy reduced th~ combined number of dynamic
checks by 70%.

Table 2 ccmtrasm the ear- meaaura for the buck prm
grrun. Dependence anal ysio done waa able to determine
that there are no dependence carried by three parallel
100pa, each encapsulated in its own procedure. How.
ever, since each of the loops containe accw to the ar-
guments of the enclosing proceduw, ace- checks we
still neceaaary inaide the parallel IOOIMsince rmthmg
is known abo~t the contexts in which the procedures
containing the 100pa are called, and whether acc-
to the arguments could cau data races. With inter-

proccdu i al information, the imtrumentstion system is

able to determine that none of the procedures contain-
ing a parallel Imp in called from within ●nether paral-
Irl kmp; thmefr)re, all instrumentation can be omitted
from lhr aforementioned three parallel 100pa imnwdi-

ately. ~or R fourth pudlcl loop that contains a call

III a prmdur~, all instrumentation aleo wu ●laminated
Iwrau,sr the ~qalysin wax able to determine thnt the nide
,.lh’ctfi ,Jf thr promdurt did not ruuh in any carriccl de-
~,olltlrnrrq, (NO lnstrummtmtic)n waa needed in~irle th~
pr(m-ulurr rallrd from within the fourtn parallel Iuop
olther) ‘rheIntorprorrdural approach rwlurm the the
r{llnl)llw~l nunih?r of mtatlr mrrew checks by 89% ovm
l~oth thr Immr A Intrmproredurml ntr~tqi-. ‘~he in-

tt’rprocr(lllrnl str~trgy rmlurrd thr uumbrr of dynan:lr
~llwk~ 74iXJ~wrr in rolnparmi(m to Lhr{~thrr ~pproarhes.

AII rxw”utl~m IImmr rrp(mted in tlw Imt colllmll !)[
t~~hlmI aIIIl 2 nr~ fr(ml M-IIIMII(IAI exm”ulilmn UI the in

ctrumentd program on a Suna 4/490. Elsewhere we
have nhown that aequentid executions suffice for de
tecting data rac~ in programs with Ioopbaaed par-
allelism [15]. All programs were compiled with the
Sun f77 compiler using -O optimization. Comparing
raw ●xecution times of the uninatrumented wd instru-
mented code varieties shows the run-time overhead for
on-the-fly monitoring to be relatively high. Th= num-
bem offer a conservative picture of the overhead of
on-the-fly monitoring since the ParaScope data race
run-time library ia written in a modular style of C++
and hm not been tuned for performance; for irwtance,
the concurrency bookk=ping routinea invoke “mallocn
for dynamic memory allocation of ●ach thread label
rather than a tuned special-purpcue allocator, For the
eearch program, the ●xecut ion overhead (computed an
(irmtrumented execution time - uninmtrumcnfml rxeru-
tion time) /uninatrumented execution time) of thr basir
strategy WM a factor of 1532%, whereaa the Inmrpro.
cedurd approach reduced this to 571%. For th~ hurk
program, the ●xecution overhead WM 1507% for the l)a-
eic and intraprocedural otratcgica. ‘rh~ intmprocwlllral
strategy reduced the run-:imc overhead for raw Ins!rw
mentation of buck to 347%.

5 Future Plans

WORKSHOP DRAFT

recognizing reuse of array variabl~ [6] to eliminate re-
dundant accesa check operation,

Acknowledgments

Robert Hood implemented a large part of the program
transformation system upon which the data race in-
strumented ie built and moat of the intraprocdurd in-
strumentation system prototype. Ken Kennedy, Mary
Hall, Seems Iliranandani, and Chau-Wen Twng p-
vialed m-t of the d~ription of the interprocedurd in-
frmtructure in PareScope that appearain Section 2,

References

[1]

[2]

[3]

[4]

[5]

[61

[71

K,. Allen, D. Baumgartner, K. Kernedy, and
A. Porterfield. PTOO!J A mmi-automatic parallel
programming -istant. In Proc. 0/ the 1986 lnfer-
natlonal Conjerersce on Pamllel Pmce88ing, pag~
164-170, Aug. 1983.

T. R. Allen and D. A. Padua. Debugging fortran
on a shared memory machine. In Pm. oj fhe 19#7
International Conference on Pamllel Pmcemmg,
pagea 721-727, Aug. 1987.

W. F. Appelbe and C. E. McDoweif. Anomaly r~
porting - a tool for debugging and developing par-
allel numerical applications. In Prvc. Fimf fnfer-
national Con/erencc on Supemompaters, FL, Dec.
1985.

V. Balaaundararn, K. Kennedy, U. Kremm,
Ii. McKin!ey, and J. Sublok. The ParaScope edi-
tor: An interactive parallel programming tool. [n
Proc. .~’upmcomprntm~’89, page9 540-550, Reno,
Yv, NW. 1989,

M llurk~ and L. Torczon. lnwrprucedural rq)-
tlmlzatlJn: Eliminating unnec~ary recon]pila-
tIon. A(.’M lllansacttons on /’ ltgrammtng Lan-
quagrt~and .Sysiems, to appear.

D (‘allmhan, S, Carr, nnd K. Kennedy. Irnprov.
Ing register allocation for ortbripted varinhlrn
III Prrw-dlny~ of tht ,’r’/GPLA N ’90 (’on/rrcnrr
on I’rfqranl I,anguagc Dr.slqn and Impirmrnfaflon,

W’hItr PIFUIIS, NY, June 1990.

[; (‘dldIMI, K, (‘m)pm, R. II(NMI,K. KrvInrIly,

an{{ L. ‘l-[m’zo’l. l]~ra!!aqm: A parnlld progrrun-
mlng rnvlr(mnwul. I’ht Inttrnatmnal Journal o/
,fmup~rri~mputtr Apphraflons, 2(4), Winlrr I!HW

[8]

[Q]

[10]

[11]

[12]

[13J

[14]

[15]

[16]

[17]

9 October 1992

J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Tech-
niquu for debugging parallel programs with flow-
back andysia. ACM ‘lhisactiorw on Prvgmmmmg
Languages and Systems, 1991.

K. Cooper, K. Kennedy, and L. Torczon. The
impact of interprocedural analysis and optimiza-
tion in the Rm programming ●nvironment. ACM
Thwctiom on Progmmming Languagea and Sya-
terns, 8(4):491-523, Oct. 1986,

K. Cuoper, K. Kennedy, and L. Torczon, Inter-
procedural optimisation: Eliminating unneceaeary
recompilation. In Proceedings oj the SIGPLA N ’86
$grnpo#:umon compiler Con$trwction,Palo Alto,
CA, June 1986.

A. Dinning and E. Schonberg. An evaluation of
morntoring algorithrna for accesa anomaly detec-
tion. Ultracomputer Note 163, Courant Inetitute,
New York University, July 1989.

A, Dinning and E. Schonberg. An empirical
comparison of monitoring dgorithma for acceae
anomaly detection. In Second ACM SIGPLAN
Sprnpo8iwn on Principlc8 & Practice of Parallel
Prvgmmming (PPOPP), pagu 1-10, Mar, 1990.

M. W. Hall. Managing Interpmcedural Optimiza-
tion. PhD theain, Rice University, Apr. 1991.

M. W. Hall, K. Kennedy, and K, S, MrKinl~y
lnterprocechd ~ranaformations for parallel code
generation, In Proceedings of Supemompuflng ‘9f,
Albuquerque, NM, Nov. 1991.

J, M. MelIor-Crummey. On-thefly detection of
dat~ racea for programs with nested fork-join pnr-
alleliam. In Prvc. 0/ Supercompntlng ’91, pmgm
24-33, Albuquerque, NM, Nov. 1991.

S. L. Min and J.-D Choi. An efkient rrNhc*-
baacd ncceruanomaly dwtrction schrme. In Prrw. of
the 4#Alntemai~onal Conference on Arrhlfrrtural
.SMppoti for Progmmmcng Languagr.~ and oprriit-
Ing .Systems, pngm 235.244, I)nlo Aim, (“A, Al)r
Iwl.

It. H. 11, Nelzm nnd Il. l’. Millrr. I)rhwling IIIIf,n
rm’es in pmallcl progrmul●xccutions. Ill 11 (;I’lt”rn
trr, ‘r. (~roas, A. Nirolsu, and Il. I%tlun, r~llt{m,
Languagrs and (.’ompdrrs /or Prlrwllrl (“ompullrtq
MIT thus, !Mll, AIIUJin /’ v, o/ fhr .Yrd W’I)rk-
shop tin I’rug, / ~ngs, und (‘IImpIlrr.~ Jor I)(lnlllrl
{ ‘ompuhnu. !,vmr, (‘A, (Aug. 1!)1)0)

WORKSHOP DRAFT 9 October 1992

[18] I. Nudler and L. Rudolph. TcmlJ forefficient devel-
opment of erncient parallel program. In First 18-
meli ConJennce on Computer Systems Engineer-
ing, 1986.

[19] E. Schonberg. On-thdy detection of a:ceM
anomalies. In Pruc. ACM SIGPLA N ’89 Confer-
ence on Progmmming LanguageDesign and lmple-
mentahon, paga 285-297, June 1989.

[20] G, L. Steele, Jr. Making asynchronous paralleling
cafe for the world. In Pnx. of the f990 SVmpo-
sium on the Pnncnplea of Progmmming Languageq
PE@E218-231, JaJI. 1990.

[21] R.N. Taylor. ~eneral-purpose algorithm for an-
alyzing concuh.ent programs. Commrnnicationa of
the ACM, 26(5):362-376, May 1983.

[22] V, J. Torczon, MuIti-directional search: A direct
search algorithm for puallel mtiina, Technicsl
Report TR9Ct7, Department of Mathematical Sci-
ences, Rice University, May 1989.

[23] M. Young and R. N. Tay!or. Combining
static concurrency analyaia with symbolic execu.
tion. IEEE 7kansacilons on Soj%wamEngineenng,
14(10):1499-1511, Oct. 1988.

Direct Manipulation Techniques for Parallel Debuggers

Chern M. Pancake
(Visiting Scientist, Cornell Theory Center

Department of Computer Science
Oregon State University

Ch’vallis, OR 97331
pancnkefiilcs.orst.edu

Abstrxt: Graphic displays offer the debuggerckveloper a meansof managing the density ad
complexityof the data gerwratedduhng execution of pandlel p’ograms, In w,ldkion,graphicaltechniques
can be usedto simplify the ways in which tlw usex interacui with the tool, Direct manipulation (using a

mouse or other pointer device) of graphical objects reduces the number of physical ati cognitive

o~rations required of the user, llds pager discusses how direct manipulation can IM applied to debugger

interfaces. Examples are drawn hum pototype trace-based and breakpoint-styledebuggers,but most can

be applied to any parallel debugging tool.

Inmiuctkwl’

Grtiphical user interfaces, increasinglycommon among all typesof software teds, arc nt)w

iI mmnd part of most production-level parallel debuggers. To Mc, h(lwc~cr, “GUI” has Mcn

somuthingof an exaggtratiort, The,w ilchuggcrstypicitlly exhibit few graphical citpd)ilitics other

[him ,Scrolluble disp!ay windows and pushhmton controls. M(w sophistictitd graphid

[cchniquc~ -- in the tom of visualizations and dircc[munipulati(m mcchtmisrnsfor in~cr;)cling

with thcrn -- Iargcly huvt! km ncglcdcd.

I

The criticisms of debuggingtools voiced by the usercommunity retlect this shortcoming.

The complexity of parallel debuggers, the difficulty with which they are operated, and their

inability to characterize program execution in useful ways are cited frequently as sources of

dissatisfaction [11]. Graphical display techniques offer the debugger developer a means of

managing the density and complexity of the data generatedduring execution of parallel programs

[14]. Moreover, graphical mechanisms can be used to simplify the ways in which the user

interacts with the tool.

This paper focuseson direct manipulation: the use of a mouse (or other pointer device)

to interact via graphical objects displayed on the screen. The fmt section describes how direct

manipulation mechanisms carI enhance the ergonomic and cognitive2 aspectsof software tools,

The discussionthen turns to examples of how direct manipulation can be introduced into parallel

debuggem. Specific examples demonstratehow direct manipulation facilitates user control over
● the rate at which information is displayed,
● the sequence in which information is displayed,

● the amount of information presented,
● the level of information presented,and
● the contents of debugger-controlledentities.

A final section draws someconclusionson thecurrent stateof direct manipulation techniquesfor

parallel debuggers.

The Basis for D&ect Manipulation

Rcccnt advances in graphics technology have revolutionized the area of user intcr!m!s.

The widespread availability of graphic~ hardware, windowing platforms, and mndurd grophics

libraries malw it possible to develop software tools that can he ported ticmss a variety of h[mt

machines and operating systems. In particular, the proliferation of inexpensive graphical display

hmlwurc imd the subsequentpopularity of window-based u.scrinterfaces hmw Id U) incrcusing

demands on parallel dcbuggnr devclopm for grtiphical support.

Strictly spwking, grtiphica! techniquesurc those which um non-tcxuml in nuturc. “WY

rely on shqw, color, scrccncd wxturcs, etc., m rcprc,wnl Iogiuul ml physicul churuckrkics in

flgurtilivc or symbolic form. It cm k! urguw.1.however, thut u short word (c-g., “run”, “SIL’P”,

or “cai[”) in s(mw LV.LWSc(mvcys rmw direct nwtining [bun u con[riwd icon. (:tmcqumly. !hi!

definition of graphical will be broadened somewhat for the purpows of this discussion,

encompassingsymbolic use of simple words or acronyms as well as more traditional iconic,

plotted, or rendered representations,

The importanceof graphical representations for managing large and complex data domains

-- such as those imposed by parallel debuggers-- has ken dealt with elsewhere (e.g., [18, 21,

19, 24]). Well designed graphictddisplays can integrate substantialamounts of detail witiout

sacrificing intelligibility. They capitalize on the fact that humans a-e visually oriented, and

especially adept at recognizing visual patternsand deviations from thosepatterns. As Tufte [22]

has demonstrated, visuaJ displays can make quantitative information much more intelligible by

(1) makhg large data setscoherent,

(2) reflecting both the statistical and the logical namre of the data,

(3) revealing data at varying leve[s of detail, and

(4) encouraging the eye to compare and contrastelements.

Although all these characteristics affect the usefulness of a parallel debugger, the last two

transcenddisplay techniques to play key roles in managing user interaction.

The availability of u graphical interface platform, whether or not visualinuion techniques

are employed, makes it possible to incorporate direct manipulation techniques. These offer

several advantages (cf. [8. 6, !8, 13]):

● The “control language” whjch must he learned to operate the software tool is

reduced.

● Direct manipulation conuo]s are cited by usersas being more enjoyable to kmm

and use than textutd languages.

● Common typing errors arc clim~nated,

● The number of physical actions required to perform each operalion is rcduccd.

o Thm am fewer opportunilim !_(’rsynutx wrors.

● Since operations am selected hy recognition ratlwr than recall, a slowtw Way

period intenwnes before action initiation.

When visualimticm is pre.sent, tiw combirmtion O(direct manipulation with grtiphicd

rqmxcmti[inns further cnhanccs tlw u.scrcnvironmcnl. lndividuul operations am mf~rcintuilivc,

sinuc (hc user rm longer needs m muk a ctm.scitms~$[muhl~ionM!lwccn inffmmaliorr displi]ym.1

grtiphically nnd urbit.rurytcxtuul sti,ngs, There is sonm uvidcn~.cthut this rcducti(m in ctlgrlitivr

Il)ill.1 rcdu~’csthe numhcr ()(scmuntic crnws [H, 26, 16].

A u.wmrinturfauc utin irnpkmcnt tlinxv m;lnipulti[i(m kchniqucs M .wvcrul 11*vcIsi~l

inlplcmcnltilmn, I+w our purpmsc%,t!uch inu!ructi~mnwchunism can be untcgtwizuduccl~rdingII}

Ilk: dirr~’lnrss Id”ils physictil ml Iogictd suppfm. “l-histnx{mtm]y is summurlmd in ‘1’uIW 1,

.,

Table 1. Direct manipulation mechanisms,classified by directness

Physical Direcmess LOgical Directness

least direct cascadedmenus

pointer device menu

touch screen button

virtual reality glove
most direct

graphical object

Phyalcal directnew: The purestform of direct manipulation occurswhen the user’s hand

is moved within a virtual redi~ glove to mimic the manipulation of a physical object. A less

tactile interaction is achieved when a touch-screen registers rhe positioning of the user’s hand

over elements displayed on the screen. Alternatively, a pointer device can be employed to

redirect hand motion so that cursor movement follows the general direction and proportion of

user movements,

Clearly, specialiud hardware is required to implement virtual reality and touch-scrwm

mechanisms, At the present time, such facilities are inordinately expensive and sorncwhat

disappointing in terms of reliability. The remainder of this discussiontherefore conccntrutcs(m

pointer-based mechanisms.

interpreted as gtmeric; that

,j(~ys[ick,stylus, etc.).

Logknl dlrectneas:

To simplify terminology, re!krences to “mou.w” uctions should hc

is, applicable [o any standard pointer device (mouse, tracking IMll,

Manipulation is most direct when the user i:: permituxi to “grub”a

buttons, which are simply a graphical extension of text-string buttons, do not raise the l~vtA of

logical directness, although they Cm improve recognition in situations where multiple words

would be required to represent the command textually [16]. For this reason, the examples given

in subsequentsections focus on direct manipulation of graphical objects projected in some larger

representational framework rather than icons per se.

Direct Mdpufatbn to Conbd Onier of DisphLy

Once visualization has been employed to present of debugging information, graphicat

techniques can be extended so Ihat the user manipulates the represemat.ionalimages displayed

on the screen. Unlike more traditional ways of supporting user choices -- via selectable buttons

and menus which make usc of textual labels -- this approach allows the user to conrrol the

progre~ of debugging without the need to mentally i.ntepet and apply arbitrary word sequences,

numeric identi]cation codes, etc.

Consider, for example, how the speed and direction of execution are controlled in a

parallel debugger. A command-driven debugger,such as Intel’s IPD [7], requires that the user

comectly recall md apply one of several commands (run, rerun, step, halt, continue, etc.) and

their syntactic variations (e.g., “step -i” vs. “step -c”). The adoption of a window-based interface

simplifies this through the provision of labeled buttons or menu lists. In CONVEX’s CXdb [21,

(or cxarnple, a row of buttoncontrols offers faster interaction sequencesfor functions like tho,se

t~f IPD, In this cur the user moves the mouse to posilion the cursor over the butl’m, then

prcwcs a mouse button indicating his or her selection, (Note that in a typical debugging

sccnurio, the user subsequently must position the cur,sor over another button in or~cr [o

discontinue execution.)

Button- and menu-bawd interfaces offer the advantage that user interaction is m(wc

uuonomical (ban typed commands, in terms O! the number of physical movcmums required.

Whti[”s m(}rc, (Ipp{)rtuniticsfortrr(]rsiuere~LIcc~sin~e the U.scr is no Iongcr rcsponsihlc t“(}r

synlax. !k!rnantic mlors cun also k minimwml, by de-sensitizing buttons or mt!nu items wht!n

Itwlr ,sclcutiOnwould M inuppropriwt. However. constant mou.scmovcmcnl and fine-grilimwt

pt~slu{mingis rcquirctl -- piirthihidy when Iwtons ml nwnus arc I[xatcd at onpositu cxlrcnws

(Ii”[hc Uuhuggcr window (iI design pt~licytypicul of most graphicul intcrtwx plutftmms),

Such mt)[i(ms ml tw strctimlint’d [tlnlugh [iw inc(lr~mlli(m ()! gruphiuul dirw

[]]tinipuli][i(ln [uchniqucs,which invcs[IINW,SCUcti(mswi[h rxplicit c{mmd [W(91lun~-li[mulity, Al

the simplcs[Icwl, mouse humms my t~: mplt)yud I() SINWICUInwnu [w hutum s(.lc~”[i~ms,III Itw

lriK”l’ bil?i(’(! (Irhuggrr illUSlrillC’d in I:igurc I, Iiw L’XilIlll~l(!. IIUIIOII lm’s.ws r12pliC;ll~’111(’ ilL’lit)ll\ (~1

5

F’MIYLLEL LOOP7133. lrT.l. z
●RIVATE (x,.t, Z. Xl, Yt, Zl. FK, WI,

6

I

J.IW. OELR.ISWX.W. R,CP.W
6 NI.RP.IR2.R23.csPNI.S3PNI.D1lR.
a TR.TTH,wNI.Ix)

IF ,(:WUJ.1) THIN
Y.YmL
z.zmL

ILSI
x.x??
Y.YP?
Z.zr?

END IF
RM&x.13 .0 II

Figure 1. High-level execution replay from PF-View [25].

the buttonslocated at the bottom of the window. To step forward through the program, the user

can either activate the “next” control or click the Iefthand mousebutton anywhere in the display

area. Backward movement is specified similarly, via the “previous”control or the middle mouse

button.

Direct Manipulation to Control Lmel of Detail

The concept can be expanded to provide more manipulative power. The PF-View tool

permits the user to change the level at which program events are animated by positioning the

cursor on a higher-level icon and clicking the righthand mouse button. Figure 2 illustrates the

effect of “expanding” a high-level parallel loop representation to reveal more detail about its

execution. In this example, six processors were participating in execution of the loop (green

circles), but two became suspended(red circles with icons) as they tried to gain accessto shared

variables guarded by locks. The white outlines -- indicating the holder of the lock and all current

contenders-- appeared when the userclicked the middle mousebutton over one of the suspended

processorsto gain access to even lower-level information. Had the user clicked instead in the

background area of the expanded display, a return to the high-level animation would have been

effected.

L>irectmanipulation can also be used to control the status of debugging filters or other

controls. Figure 3 pfWnLS a sample display from a prototype breakpoint-style debugger for the

Intel iPSC/860, A closeup (Figure 4) shows how the statusof prcwessornodesis animated’ here,

nodes are arranged in a mesh, but the topology can be altered to reflect the logical

c(~mmunicationspatternsof the program under study, The color of each element changesdlwing

execution to reflect the execution state of the corresponding node. Moreover, as the display

legend indicates, the wser is free to click on processorsdirec:ly with the mouse. Selecting a

n(xk’s graphical image brings it in or out of the current focus of interest, thereby controlling the

ntiture and quantity of debugger information reportedduring execution. In practice, the graphic:d

rncchiinism mews that the user is no longer forced to memorize (ii) arbitrary processnumtwrs

(ussigncd by the prt!vious debugger without regard to communications patterns), or (b) the MN

~~1’thfw nurnbt!rswhich f{mn the current umtcxt for tipplying debugger comrnwds.

()ncc dlrcct graphical control is introdwmi, rubber-banding captibiltlics cm M w.kkd [(~

summiinc the speci!lcati(m of debugger (pmitions. In the XIPD pr(m)(ype user, for cxamplr.

[hc u,st’r~iln press i]nd hold the mouse button while dragging the curstwucross the (lis~lii~. An

(mtlinc iipl~ii~s which cim bc manipuliikll to ~n~()[~]pii~s (1)C desired numhcr ()(n(Nh:s. Wh~*n[t~l’

huit(~n 1s rclcu.scd.lIN (Jpcra[i(mis ilppIiCd [() illl rl(dL!!; ~(mt.uiuvd within [IN! oullinu illl!il. ‘1’()

7

ma: t

Figure 3. Rolotype user interface from XIPD [12],

I;igurc 4. proms slams display is

n

in XlPI) [12].

provide consistency as well as ease-of-use, the same type of node diagram is used to manage

several XIPD operations:
● to specify what nodes should be loaded with a given executable
● to adcb’iemovebehavior reporting filters

● to control the set of messagesto be reported
e to select what processesshould be killed

,&a tlin. tiine. tlin.

)liM. tiln. tlin. tlimo. tlim

n

II e

&!l!!F

Figure 5, Navigating data structures in VIPS [17].

D&cct Manipufatwn to Control Progmm Values

Another application of dilect manipulation is to support the navigation of data structures.

T{) date, serial debuggers (e.g., [17, 15]) have provitk!d more flexible data traversal mwhtinisms

than do parallel tools, but the same techniques apply in both cases. The exampk in ~igurc 5

illustrates how arbitrary linked data structures can be portmyed for examination and mtwct; vc

update. The u.scr[lrst views iI high-level (i.e., iconic) rqwe.wntation including till nmics in tilt

Irw or grdph. S~*ll*c-tinga mxlc ic(~nwi[h the III(NJ,;Cresultsin a h)wtr-level disrl;iy {)!’the

9
,,.

portion of the tree immediately surrounding that node. The data is visible in this representation

and can be edited interactively. It is also possibleto view selectively just a portion of the graph

by indicatingparticular pointer values (the highlighted boxes at tk lower left in Figure 5); a

special window shows just the portion of the list comrolled by those pointers.

Figure 6. Graphical control of messagequeues in XIPD [12].

The graphical mechanismsbecomeeven more expressivewhen the u.wl can grab CltimCnLs

imti IIIOVU [hcni or delete them from [hc display, provoking a corresponding change in the

underlying program data. In a parallel debugging cnvir(mmcn[, such techniques allow the user

u) cxammc and conlrol inteqxoces.sormessages. Figure 6 portrays wmther display from XlPD.

[his [imc reporting the uonkmtsof mcwgc queues in lcrms or sourcenode. dcslinati(m n(dc. arid

whc)tticrthe ntxk is Mocked pending a send or a rcccivc (qwration. By clicking on (~nct~l the

m~’s,sagusymb(ds (tt~p display). t.tw tiscr can p(~pupa supplcrncn[ilry window wi[h mtsstigc

spccilics. DcprcssiI~gthe c(mtr(d key while the mwagc ium is cliukcd inwuc[s the duhuggur

u) dclcw lhc ~nding mcs$ugctrom the queue. (A [wo-htindcd (Stmtrolscqucncvwtis ~h~wll st)

[hul mussugu.$wtmld n[)l hc dclctud intidvcrlcnlly.)

10

conclusions

Direct manipulation techniques can yield significant benefits for parallel debuggers.

Graphical displays accommodate the volume and complexity of program behavior data much

betler thm their textual counterparts. The addition of direct manipulation enhances user

interaction even more. Such facilities support faster operation Mn do keyed sequences. They

also sidestepmany oppmtunitics for syntactic and semanticerrors. thereby maximizing interface

effectiveness.

11should be noted that the examples presentedhere am from prototype tools developed

in researchenvironments. To date, the so-called graphical debugging tools marketed by parallel

computer vendors do not exploit graphical direct manipulation. They employ window-based

platiorrns to interact with the programmer, but the information displayed within the windows is

textual (though multiple fonts, reverse-video, or other highlighting techniques may he utilized)

and user interaction is managedthroughmenusand pushbuttoncontrols, labeled with text strings.

The examples discussed also fail to teflect the full range of possibilities for direct

manipulation. Parallel debuggers are not keeping pace with other interactive softwate in their

use of the new technology. Tools for visualizing scientific data, for example, provide more

flexible mechanisms for editing and reformatting graphical layouts and also offer interactive

graphicaJlanguages for specifying how the raw data should be processedfor display (cf. [23. 5,

4]). program development environments have progressed even funher; they now rely on

languages and approaches that are inherently visual, not just graphical translations of textual

systems. Such concepts have not yet been adapted to parallel debugging tools.

To yield substantial benetits for tool developers, the new techniques must be assessw.i

trom cognitive as well as ergonomic ~rspectives. Clearly, direct manipulation mechanismscan

(rely he effective if the graphical representation and the ways in which it is manipuhmxl

correspond well to the usr’s mental model of program and debugger khavior [9, 8, 131. 1! ti

new, visual language must be committed to memory, graphical conuol will be fmstrating ml

cwn mmtcrproductivem Just as in debugger visuitlimtion, the challenge is U) arrive al

mechanisms that are Imh intuitive and fast.

References

II

.,, ,

3.

4.

5.

6,

7.

8.

9.

10.

Il.

124

13,

14.

15,

16,

17

IN

Curtis, Bill: A Review of Human Factors Research on program~ng Languages and

Specifications. Proc. Human Factors m Computer Systems, pp. 212-218 (1982).

Dickinson, Robert R., Richard H. Bartels and Allan H. Vtwrrteulen: The Interactive Editing and

Contouring of Empirical Fields. IEEE Computer Graphics& Applications. 9:34-43 (May 1989).

Dyer, D. Scott: A Dataflow Toolkit for Visualization. IEEE Computer Graphics & Applications.

10, 60-69 (holy 1990).

Hutchins, E. L., J. D. Hollan and D. A. Norman: Direct Stipulation Interfaces. In User

Centered System Design: New Perspectives on Human-Computer Interaction, ed D. A. Norman

and S. W. Draper. Lawrenee Erlbaum Associates (1986).

Intel Supercomputer Systems: iPSC/2 and iPSC/860 Interaet.ive Parallel Debugger Manual. Intel

Corporation, 1991.

Morgan, K., R, L, Morris and S. Gibbs: When Does a Mouse Become a Rat? Or Comparing

Performance and Preferences in Direct Manipuiauon and Command Line Environments, The

Computer Journii. 34 (3): 267-271 (1991).

Norman, Donald A.: Some Observations on Mentaf Models, In Mentaf Models, ed. D. Gentner

and A, Stevens, Erlbaum Associates (1983).

Open Software Foundation: OSF/Motif Style

Pancake, Cherri M.: Software Support for

Communications of the ACM, 34 (11): 52-64

Guide, Prentice Hall (1991),

?arallel Computing: Where Are We Headed?

(1991).

%n~i~k~, Cherri M,: Visual Techniques for Breakpoint-Style Parallel Debuggers. In preparation.

Pamxkt!, (-”hern M.: GmpMcal Support for Parallel Debugging. To appear in NATO Adva.mxd

Research Workshop on Software for Parallel Computation, ed J. Kowalik. Springer-Verlag.

Pancake, Cherri M, and Sue Utter: Debugger VisuafizN.ions for Shiired-Memory Multiprocessors,

In High Performance Computing 11, ed M. f)urand and F, El Ilabaghi, pp. 145-158, Elsevicr

Scicncc (199 I),

}’azel, L) P,: DS-Viewer: An Interactive (iraphlcul

Sysmms Journal. 28 (2): 307-323 (1989).

l<~~hr, (iahrwlc: (!ndt!rstanding Visual Symbols.

I.mguagcs, pp, 184191 (1984).

i)at;bStructurc Prcsenttifion Facility I!I.M

Prt)c lti~~ 19X4 Workshop” (m VISUUI

Slmultillons.

] 1),)

19.

20.

21.

22.

23.

24.

25,

26.

Smith, W. J. and J. E. Famell: The Ergonomics of Enhancing User Performance with Color
Displays. ~. Society for Information Display, Vol. 2, pp. 5.1. 1-5,1.16(1985).

Sun Mhxosyscems, Inc. OPEN LOOK Graphical User hwerface Application Style Guidelines.
Addison-Wesley (1990).

TWte, Edward R.: Envisioning Information. Gra@cs Ress (1990).

TWte, Edward R.: The Visual Display of Quantitative Information. Graphics Press(1983).

Upson, Craig et u/.: The Application Visualization System: A Computational Environment for
Scientific Visualization. IEEE Computer Gmphics & Appliciukms. 9:30-42 (July 1989).

Utter, Sue and Cherri M. Pam&e: Advanas in Parallel Debuggers: New Approaches 10

Visualization. Cornell Theory Center Technical RepofiCTC89TR18 (1989).

Utter-Honig, Sue and CM M. I?mcake: Graphical Animation of Parallel For&an programs.
Proc. Supercomputing ’91. ~. 491-5(KI (1991).

Woods, David D.: Visual Momenmm: A Co~ept to Improve tlw CognMve Coupling of Permn
and Computer. International Joti of Man-Mwhim Studies. 21:229-24 (19W.

1’1:

Direct Manipulation Techniques for Parallel Debuggers

Cherri M. Pancake
(Visiting ScJentist, Cornell Theory Center)

Department of Computer Science
Oregon State University

How Useful Are Today’s Parallel Debuggers? *

● Complaints from the user community
“too hard to learn”
“tedious to use”
“the information is microscopic”
“won’t give me the information I really need”
“too hard to make sense of the data”
“doesn’t really help me find the errors”

● Recent sumey of distributed-memory MIMD system users
00’?40 have never even tried to use the parallel debugger available
90?40still rely primarily orI hand-coded instrumentation

● A number of users have developed their own specialized tools

Challenges for the Parallel TOQ/Developer #

~ Technological clwdlenaes: stabilize an inherently unstable environment
intrusiveness problem
nonreproducibility problem

● Data reduction challenges: reduce execution data to manageable size
filter out redundant or unnecessary data
extrapolate higher-level “events” from low-level data

● Coanitive challenges: present information in meaningful way
must relate to programmer’s concept of program
must be clearly applicable to task(s) at hand
should be straightforward to learn
operations should be intuitively obvious from displayed info

● Ercmnornic challe~: make debugger use eff~cient physically
should minimize number of keystrokes
should minimize possibilities for manual errors
should minimize amount of mouse motion required

“Graphical” Debuggers (Convex CXdb, Cray ATscope)

Iil

rl!e, ●OWJ* r o-x-s. :* O.’c! Q!l* I

c .-
t,

twl $ I
w mmi.w

c

How Graphical Techniques Help
,

● Graphical techniques: non-textual in nature
rely on graphical attributes (shape, color, screened texture, etc.)
figurative or symbolic representation of objects, characteristics
iconic, plotted, rendered elements
“iconic words”

● Graphical displays of quantitative data
can make large data sets coherent
can reveal data at va~ing levels of detail
can reflect both the statistical and the logical nature of the data
can encourage the eye to compare/contrast elements

● Graphics can also be used to manage user interaction

Graphical Interactions with the User
,

● Direct manipulation mechanisms

● Direct

require mouse or other pointer device
user manipulates graphical objects displayed on screen

manipulation can support many debugger activities
control over direction and speed of execution
control over level of information presented
control over amount of information presented
control over contents of program values

● Advantages
smaller “control language” -+ reduced learning time
fewer physical actions required to perform operation
recognition rather than recall -+ slower action initiation delay
elimination of common typing errors
fewer opportunities for syntax errors
no display/text correlation --> reduced cognitive load
reduced cognitive load -+ fewer semantic errors
users claim they are more enjoyable than text-based techniques

m
c
+

How “Direct” Is Manipulation?

II

Logical Directness

cascaded menus
menu
button

graphical object
n

<

Ieast direct

most direct

Physical Directness

pointer device
touch screen

virtual reality glove-—

Controlling Program Execution (Intel IPD)

(3:0) > cent- (s12:0)
(all:O) > ~ Qsu88. f{ J#Z75
(all:O) > b

(all:Ol
BP 4 Type File name Procedure Breakpoint Condition Bp context
-=== W=X --u-m--= =--=-==== m~-9999m9-99- ~- -wmnmmmm-

1 C Bp gauss.f shadou Line 17S (all:O)

[all:O) > z ; -i~
Context State Reason Src/Obj Name Procedure Location
m=--mm- --~ --~ n9n---~ m~-u- mDm---

●(81.1:0) Breakpoint CBP1 gauss.f shadow Line 175

(all:O) > diap abra~a

●* gauss.f{)shadowonbrnotis ●*
●**** (all:O) ●****

nbrnodes - 4

●* gaum.f(}shadowotim~s ●*
●**** (3:0) ● ****

nbrnodes = 3

Controlling Program Execution (CONVEX CXdb) ~

Ommmd I
cmaandIndoM cxdbuln&3us !—

~13:break mtlm. on [@O/-l. E-1ed. lgmre 0/0
[OxMOOi324? WITS in ●xample. ? lirm 2

tCX&) mn
StartingpwJces9?901:●.mt
Pmmss CU(V121 ate by 9kpt O. ●t COxB000i3241 ~ITS In@xampl@.f ilne 2
(Cxdb: !wei& Ill-w 15

Ill
nl: bm~ lim. UI [s0/.1. Enabled. tenor’e 0/0

[ox&Y3013e61MC ill @xaapl&, ! line 15
(Cxa) cant Irxl*
RemMImg•W~JtiOn o? Process CeO/e]
PrOCRSS (s0/0] ●t~ ~ *pt 1. ●t COx800013&l ABC In ●xqle. f 1 l?IS is
(~) set step ●xpresslm
(U*) ●tep

5teWing procese [*W=] @ 1 ?xp17sslul
Pmcass [s0/01 .toppsd •~l~ ●t [OxK)OO13fOlNC In ●xaaplc.f Ilns15
(cm) I

t
UI

mmmEiEEclEEclBEElmIicI
E

he example program has started.

Sourceulndou FilevieM salrceLhltProceaaulndws

file: exaple. ? praceas: [WO1 f311ve
s

PROGRMWITS
!e PRIN7●. “The •x~le progran has started, -
3 U41 fiK
4 PRINT ●, ‘The exaqle pqra 1s done.”
5 Em
6 II

Controlling Direction/Speed of Execution (PF-View)

Controlling Level of Information (PF=View)

Contm//incJ Amount of Information Presented (xipd]

Navigating Data Structures (VIPS) .

4./-==
~--------

tm tlim. tliso. tsino.

1111

—-

~L’——
L

Controlling Message Exchanges (xipd)
.

Conclusions ,

● Direct manipulation techniques can improve parallel debugger usability

● Open

expioit pattern recognition capabilities
minimize hand movements to perform complex operations
displays can be manipulated directly rather than indirectly
sidestep many opportunities for syntactic/semantic errors

areas for further research
flexible mechanisms for editing/reformatting graphical layouts
graphical specifications of how raw data should be processed
approaches that are inherently visual - not translated from text

● Dual goals: must meet cognitive as well as ergonomic needs

Problem Areas

Direct manipulation must be assessed according to ergonomic value

Must also count cognitive costs

Effective only if
graphical representation corresponds to mental model
ways it is manipulated correspond to mental model

Consistency is critical
(example) xipd uses same graphical manipulations to control

where to load given executable
addhemove behavior reporting filters
domain of message info reporting
which processes should be killed

Transparent Observation
of XENOOPS Objects

S. Bijncns, W. Jawcn, P. Verbetan
Dcpartnwnt of Computer Science K.U.buven

Celestijncnbtt 2(MA
3LN1114uvan

Belgium
e-msil: stijnfii)cs,kukuven.~.lm

Kepwds : trmspmw *twgging, object-oriented patalkl Sysle-m dkuibuwd ttmnosy muhiptucesaora,
Mecdon, IsMa-objects.

Within our msmh seam we are building XENOOPS a pmtotyp LWCutian●nvirmmeN fbr distributed
IWFSOQrnuftiptwessors which suppts the dewlopment qfctm@ex pamllel r@iawions.

The mnstmction of smchap@ications requires the use of a tool to debug the wrious Cmponents of am
appiimtkm and to Aserve their behaviour (intemctmn) an a distnbued ntaso~ txm~ter. h this ~per,
we will outlitw tk hic ctmceptsbehind o~r debugging Id, and ntahdy~us tln the ~tim to disc
a tnaqmtwit and dynamic observation of abject-oriented pmllel applicatkms,

Our appnxuh is tied tnt the concept of mquttational twjktiom which led to a clusn se~mtiat
between application ad obsenwtion arpects. Tk & that realises &icatia &&nt obsenvatitm
will be genemted by a prvpmcessor for C+ +.

L Introduction
XENOOPS, M ~ym far an eXecution Environment for Object oriental Pamllel Software[l], SUPS
the dcveloptmnt of @ive parallel applications, Such applications comespondto paralkl computations in
which Ihe worklod distribution changes as Ihc computafhs evolve, In this comeat dynamic Iomi
balancing can realise a relevant performance gain by reducing imbalances in the worklod distributiat as
they occur. II is our believe that Ihc production of pmallel software for distributed nrmosy coquters will
be accelerated if application writers adopt Ihc hewiits of [M object-asiented rrddology. Object-osicnM
programming cwgmtizes programs M ctm~ra[ivc colkctions of objects, c~h of which ~aents M
mstancc of sottn class. and whom classesme all numkrs of a hierarchy of claasa unitedvia inherimncc
relationships.

“[”hisptqm will focus on the basic nwchanism 10IWIII.SCa tsnnspnrcntd dynamic observation at the object
level. fly traqmmnt we mean thatno changes 10 the application cak arc rcqukcd, and thnt llM scmstttlcs

of the application C* urc -qmrl from pcrformmwc- nnt intluenwd, By dynamic wc nmtt that Ihc

debugger mny be activated at any time, without nwuling IIW application.

!hxtion 2 &ctibca the XEN(X)PS model ml illustrates some of its specific Axintages like reusability
with regard 10 It@ balancing,

!ktmon lh~ discussesthe required (kbugging l“uncuonalitim wiihin an object oricnkd franwwork, which

Ii rwrtmolly diffctent from low level rvmu IrilUlllg.

()ur dchug~cr design is had 011Ih.cLWIICCpIof umnputitliurml feflectionl 21, which is descrikd in secti(m

tour hI WWast 10 the common ml hm’ ‘prml Wllrllknt Insertion’ tkktgglng techniqum. wc usc the
LwIIi’epl M refkmm to devrlop n m(nlulm ild Irmwpnrcnl way ot mlding debugging afdlwmonitoring
Iulwlmmdmcs m a sy~tcm. “Ilw IIIIIIWI 1)1trllrmm prmmks nrt cmra Amcnmon of ubstractiun (nmta-
dmtlurtl~m J that LXMMplCII~IIIS AI;I iIlWII ,IL’IIIMI iiIltl wqmr. ulxirat’li~.m. III uhject-ormuml sy$[ctns nm[n.

,111,

Section 5 tseats slw realisation of the proposed rmchanism by &scribing a pqmcessor which generates
application &wmknt observation cock for XENOOPS ap#ications in C++. To illustrate dte proposed
concepts, we &suibe an example horn he domain of computational fluid dynamics (CFD) [4].

In section 6 w wiU illusuate H specific debugging policks thst csn easily be redid with tlw

~ mtism.

SectiM 7 will db b suv that is offered by XEN~ to radi~ tlM mchanism Section 8 will
compxm cmr~ to dynamic dsbugging with related work. We sumnuriae in section 9.

2. The XENOOPS model

The piwy ~ of w ays@mamworkunimEach of them enapsulwes a hctiast of tlw work to h
executed by b @ioni. lbese objscts are rnoMle to eaabk ● Iod Ita14ncing system to reallocam
work at run tium ~ject migration[5] is initialed by tlw in~ of ttm Mi#msre ~on on a work
unit. BaaicsJly, the Mi#nsm opration uses Pack and U*k -au provkkl by h pgmmnmr,
to achieve efiiciem migratiat while respecting the semantics of the @ications dam. Two dditional
operations (SpW - Join) povkk a mechanism to control ob~t gmstukity: h $/it opemdat will
divick a work unit into several migretsbk units, the Join operdon on a group of work units will
consoli- them into cnmm

On ●ach reck, the work units are stored in an ~jtir fable. Two artive objects (Ohjecb with an own thread
of control) rnaisiplab this t8bk:

●

●

Fret, the CulCuksw executes b typicol applicatkm d by sekcti~ a work unit !kmn L% Mbk, Ma

@OS’IM M ~ (for eaampk one iteration step in a CFD q@ic@on[4]), sendIng mum

McI/or waiting Rx results fromotherw-k units, arid finally putting tlw work unit-kin IIW tabk. llds
compaMsN ccwmpda to Ihe application’s algorithm ad will he provickd by the application

w~,

Ilw secod ~ive o$ject is rhe loud munuger, which runs sitnultarmusly with dw calculator. Dynamic
Id wing will be mallsed by mnsparently migrating work units between nodes.

Figure I illus~s the XENOOPS model.

-

Ezivith

. .-— ----- “. .,- .-

balancing conqmncnt d simplifies the task of the applicationwriter if he wants to integraLc, test ard
optirnim Iod bdmcing strategies for a particular probkm. Disabling h Iod balancing compormt can be
*in ● smigbtfaward way.

3. ~bugging ticti~nality

Tk tmk of ~ tb Mmviour of parallel applicaacms requises M envirmusmrMin which to cxacuta
potddly m cd * Controlkd Coalitions.

In an dject *oWJ sys~ d interaction between objscts is accaqlislwd by ndtod invoc8titm Tk
process of mating ob~-osieti systems involves two phases. FisW ~nr lad wring is *.
Claws (ec~ for mating objects) am debug@ individually. This way tk commcss of each
opstatim on M idividud obj8ct is tested. Secondly, ttw in-gratiat of tk idividd conptatts mquifes
tesling of tkir hmmtioa In particular, nwthod invMAcms d dwir afkt on starec- of interacting
conpmwstrm stlmcon Uolkd.Wew illfocus m’illmaccod phasutitbtitaw mba
sccon@dtsd by Clusicsl sequential Muggers.

Debugging fknctiamlitics CM b classified by considering thsf &bugging invdvea mvesal agcm and can
be expres~ in - of interfaces between tbsa agents. The User iniths mdebuggingaessimwith ●

Sywem that must b ~bugged. A Td must diae the above 88 unoba’usivdy es posaibk

EG-’.‘m’‘“~g System

Figure2: Debugging

Tk in- between the user and the toolspecifiesthe dehgging functionality. Scveml spproMm
exist[6]: peat—nmrmssckhugging. instant replay, flowkk analysis[7] snd otima. Ths* functionalitks arc
often intagsatd with ● gmphical interface.

The interface between llse tool and the system needs a mchanism to malisc the r@rccl ckbu~ing
functionality,

---- -.. .-------- -_-._-...
ohiccl ‘rnhk

*

Eii!i%&i’h

Figure .!: Ddwgging III XI!N(XJPS

Ilw interaction Mwcen the IWI and he XHN(IOI’S run-time system is accornplixlwd by rdding on each
node a third active cornpcmnt : n dcbuggm. “I”hlx&hugger can control and rnnnipuktc wtwk units. stored
III t~ obJecl table, Ilw rncchnmsm Ior uchirvlng ~hismicractmn in a transparent way will be dmcribed in
the ncxl section. ‘lhg nmhanism c:m Iw usrd 10 rc:discwhruad spcclrum of !unctionalilies.

‘1

.—. .-— --------- .. .W-IUUW, a I- ~p u,u m

added to the sys~m in a transp&t way. Fh&, if ckbugging is rquired another active component can &
~ (dynamically) wishout any modification of M other two co~n~. In t~ mxt section we
&scribe the ~hanism fctsachieving this mmsparency

4. ModeUing transparent debugging as reflective computation

Most cwnputAosd gsterm exhibh not only object-cornputati~ i.e. qwion dmut tir problem
domain, butalsodective co~tation, i.e. computalim tit their own executiqm.Exms@es of mktlve
computations m :

● thegatkring ofpa’fcmMnce Statisrks,

● the cokctiost of ittfmn&nt f~ debugging purposes,s&pp@ ud -ing facilities,

● self+ptimismi~ self-tificafion andself-mtivaionc

Thedecompmitioaof a cosnptdon into abject-computationawl reflectiveanqnuatioa imsd~ more
nmfufuriryinto computi systems. The computation at * objax-level mmiplaea dua representing
the phlem domnin. lb computation at the reflective level takes cwe of * iti aptktion of h
computaticmal sysWst and iIs intdhce to the outsi& wdd It mwtipube data rqnewming W actual
object-kvel computatiat,

In [2], tbe caw~ of a ~~bject is intrah.reed: a mtwbject is an ob~t that controls and manipulates
another object. In* wards, a rota-object is an object ‘alnntt’ ~ *M abk to observe md to
control it. Refbioo is achieved by setting up a ‘causal ccmecdm’ bveeadw mm-djad and its
cmeapomling oQject. This tmans that the rmta-object and bob@ ate linked in suchs way that a c-
inoneoftM twoldato rneffkct upon theotk.

Witbitt tlM XENOOPS system, a mm-object will b crea@d dynamically for every ~, tha’s wotllt
mcmitming. We ~ly this rule to work units, as &y are tlM key objecu, md tlw User is especially
inlerestd in their behaviour. In pmicular. the User is interested in: the opsratima that are invoked on a
spcific work U& b caller ad the resulting smte changes.

The ckbugging corqmmnt will interact with the nta-objects, This interface is s~ified by a set of
Opetatioas,

Typical operaliuns invnked by the &bugger on a mma-object can be classified as:

1, ~ratias to realise the dynnmic crewion ad rkstructim of nMta-objects:

. Ctm.twucrodti#ct) crmtes a mm-object for a s~ific object.

● Desfmctod) ckstroys a metwobject (when it is not rekvant any mm fcx debugging purposes.

7-, opemtions to realiw the debugging functionality:

● Tru~”=.MelM-ln\fwutif}nf): [o trace methtxi invocations m the object. This operation will
intercep[aJl invocations on the object and react in a qqxqn-hte way. The meta-object will

inform tk &bugger about the event. “Ilw type of inforrnntiorr that will be exchanged depcm.lson
the &buggitt# fu~tionalit y (post mortem, insrnrnreply ...). Note that tb proposal mechanism is
general and *S nol restrict ilselfto a specific functiomlity.

“Ihew operations ate automatically gencraled hy the XENOOPS debugging system using compile-lirrm
heuristics, For exan@e. an opcrimon like (ht .hmf) makes use of Ihe f%ckf) ard llnwkf) vraliom~
(m MI oh~ci. The= operauons are alnwdy wq)plicd try the ~ogrwnrrw for implementing the Migfutd)

t)pmauon (oh~cf mlgrmwr).

lWIS wii~ we am building a dehug~mg $YSILWI(III lt)p of Ilw npphcutiurt’s ubjcct-sywem. It is n gerwral and
III(I&IkW franwwork. “rhc ll~dl~l .III !}I llk’1:1.t}blW’lS lIIIIkCS It poswhle to trnnspamntly dd &hI@ll&l

..=-. -“.-
specitlc parallel q@icationm

5. Real&&a of the Mechanism
5.1 GellemlOppmh
A ~~~lase nmm ~ ~~ for ●very class, tip-n which M chject CM b instumimd that is
wcrth condUn# (e.g W* units). A preprocessorgammes autondcally a nmu.object-class thet will be
dymmically inm~ imo tk system during a debugging -on.

!p4—~

w “-’

Figure 4: Dynnmic debugging

TranspeIKy is tived by inmrcepting all relevant invocatim calld by tk obJectsystem. (In Figusc 4.
only fbe (M-is iUustrwd for simplification.) The nmts+bject will _ all mtbod invocation
inti tlm C&I- ~ &kgate the invocation to the ob@t itself. The object system consisting of tlw
calculator, * Iod ~ aml the object table does M tmdce W cxistemceof mu-objects: a mta-
object behaves like an or&ry object Ix&use it otk’s the sam functiodlty.

We use& iti~ relation to achieve transparency.

A peprocessm fcslizes fk necessarycork 10achieve transpuent cHn@ng:

Wu Am
be

m

is a
Wu b
Cb 1

ariginalsoufw
Ap@_wU Mclm-wu

CO& (“IUB (“bd

)
d

Cla%%%chy

Figure 5. I%cprocwssor

“llw preprocesscwgwwrues a specific hierarchy, his wny we achieve causal connection in a mmspamnt
way, “l%c Imta work unit object “is a“ work unil object (by inheritance), So the other system components

(calculmr. Ioed mnager) only WO* wilh ohjcct$ of IYpe wti unit (WJ) d will MN ~i~e t~
LIIhence wlmher he work unil is a real application WOIICunit (Appl_WU)or a meta-objed (Mem_W.J),
as IIwy can invoke the sam operations. “his wtiy * debugger can intercept all method invocations

(thruugb a nwta-object) and state chiangcswhik no othrr system compmmt will notice it.

I

!

I
1

..—

Origkl WuAM

pvmc :
// poinfer 10 LIWAppl.WU, [M
II m~ lx &bugged.

Appl_WU” my.appl.WU;

@tie :

II Caumma Called by thedebugger)

/ltlm ~oftype WU is theAppl-W[J
11tlru mm b &bugged.

Mea-wu(Wu);

// IhSmxttw
-MSI,8_wuo;

// Appl. S* mmbr functions
II Cakd by CxkxMor or Load Manager

void Do-xa_krationb;
void Send.updsce(WUK
void Ikeive-U@@WJ);
void Migr@ N-): // migration
void Sph@It); //granularitycontrol
void Join(LisI<WU>);

// &bug SpmS6cmernkr fu.wliorrs
// Cxkd by lkbu~,

void T-JMhod_lnvcwmtiono;
voidG@stco;

1;

GclEraod MM_wu class

/i [o achievedynamic binding

Ctaxl Wu (

plivals:
IIno@vW memlwra

pubtic :

// constructor
W1.o

II Vinud maTWtm
VinuQJW-U(J

// XIInwnhr functionsue &dsd
//upumvilnd(4)

viriuxl voidb-anJtemdOnoxdl
VimUl Voidsend-updme(W)*.
vimmtvoid-iveJJpdste(WU)4,

// migmlion
virtual voidMigme(NodoHk

ll~uhrity control
vir&t voidSpiiI(int)@
VinusJvoidJoinlList <Wu>w.

1:

Generatedvinud WU ctus

llw object system 00IY extwcts objects of type WU. Method invaatims are interccptal through dynamic
biml.i~, which nwms-tit_mthod-binding h~ppensat run-time depending on the ob~cl’s twtu~ type. ~
ability to CXII a variety of functicms using exactly the same interthce -as provhkd by virtual functions- is
also called polymorphism.

‘1’1

. ... ---- “We.. UIWSWF =, IUVWULIUIIS UII [IX ODJGCI.A speCllICOeOLJgpOhCymust h SpCIIkd by the
User. The code fm the Pre- an Post-actions included by tb preprocessor are generated from the
specificadon of the debug policy.

void Me~WU::Send_Update(WU neighbor, DATA ntsg)(
//This fbswtjoo is called by he Calculator

IIPRE-action
Rc-ActicmJhd_upda@(cML msg,id);

// LMkgate invocation of the osiginal
// operation on the Appl_WU
Iny-appi.wu ->setldJJpdate(wudest);

// POST-action
PosMetk@’end_update-endo;

);

void h4~WU::fkt-Stateo(

//This function is called by the Debugger
//if the User wmtts to see the state of a
/lspeCi.!lcw.

//* suarahallingof the WU into a message,
// the ~k-opration is already
//available for realizing migmlion.
snag = my_appl_WU->Packo;

// Send Ch information 10tk User
sendJo_HosWnsg);

};

Implementation of some Meta_WUrtwthda

l%st-MoWmdebu~ng/ Imtant replay

his technique is very easy to realize. [n the case of Post-Mortem debugging, the R- and Post dons just
have to register the invocation.

To realize Instant Replay, he task of Ihe Pre-aclion will be the registration (in the nwta work unii) of n
hismry of invocations that include enough informmion IO realize the replay.

Srmpshob

The rcalizntion of a consistent global snapshotof he distributed computation, essentially requires to find a
set or local snapshotssuch tint the causal relmion lxtween all events (invocations) that are included in the
snapshots is rcspcted, This mans that: if an event is contained In Ihe global snapshot and this evenl Is
caused by another event. then tk latter event rnusI he in [h global mapshot Ioo, This causal dependency
ran he rmlised with the use of vector clocks[Yl included in the meta objects.

The proposed tmcharrism for transpitrent Ckbugging with the use of tmta objects cm only function
optit.uily if mmmn offm some advanced suppott.

7.1 Synchronlzntbn

The xmmn nxxklPvides 00 eachnode of the multiprocessor three ~ve obj~ts. Because these
objects have tke own i~t life (thremi) WI simuhaneody intermt on shared data (work units),
race Canriiticrrtscxtt occur. Frx example, wlwn the Calculator has inwked the Do_an.k’ationo OPWcm
and tk ~bugger invah simultawously the Get_Statco operation, inconsistentdata will be psasedto the
debugger. Ancrtk race coalitioa occurs when the Iod ~ wants to migrxte a work tmit that is
currently SCIecwdby Um Calculator. lheae exaatpks show thst tke exist alrwly some synchronizuioit
constraints at a work unit’s imple~ntation provitkd by wlicatht programtsu and that L& &bugging
conceptjust inherirs tiw ccmatsm‘taamlrddrsommore.

!n Lb Iitemture, diffuettt strategies for harxlling syndmnhdort cOnsEam“ U exist. Chm ttmns (cutrently
MIopted in X.ENOOPS) of controlling parallel execution of tmthala is to speci~ h xllowabk control
paths through each ob@ct (e.g Path Expressions [10]). The purpose of path expressions u to conauain
parallel =tivities, which nwana they usually impose sequencingrahr than indlcadrtg paralkllsm

ml.m2 ml andm2can bruninpamlkl

(ml) Oormomml inparallel

ml+m2 ml ~ m2 must emcute serially

It should & tinted thM, kcauae the specific specification policy used, is orthogonal to our &bugging
concept, we are not limited to otM of them, Another way of specifying synchralization consuaints can be
realizad by the use of synchmnizaiorr counters [11].

7.2 scheduling

Scheduling between the ~tive components must b provided. One might expect active compwntx 10 be
mapped on the processesthat are offered by the operating system kernel. The msjor difference ktwecn a
MIMD parallel system and a traditional operating system lies in tlw fact that the processesmuting cm a
given node do not really conqwe for the prrxessm, but coopemte to improve the globaf petfotmance of
orK single application.To realira this cooperation tlw existing rmive objects (in our rnakl ● fixd set) have
at least implicit knowledge about each other.

XENOOPS &flrws a control hierarchy between crctiveobjects :

1, t’or the CUM with two active objects (kind manager and calculator), we decitkd 10 Iocnli?t the
scheduling control in IfK load numgcr. ‘rhis way, the applicnfhm writer will not hnve to dad wilh

whdding in ttw default case.

?
L, Fur Ihe case with a calculator, load manager MLI Jchugger, we recursively apply the approach to the

given situation:k debugger will control the ~chcdullng between him.self nnd Ihc lower part of the
Inerumhy (load rtwmger cxmtrolling the mtlcuhtlion)

slncc Ihr debugger controls the (WJ aflouiirm, he CM give himself the highent pdorily if necessary. For

CMIIIPIC, when tb invmaticm of Gc[..SUNC() operation i~ blocked lwcause of the Dr)_nn_llctationo has
hrcn invoked on a work unit, ttw debugger will hnve the highest priorhy If the l~_M_.ftcrationo oprnlion
Iimshm Ilis wny nn mvocatiort of [ict .Stutd) WIII always k W nearest~~nsistcnt ~M@in the ful~l~.

‘I”hc%CICCICCJcontrol hierarchy hctwrml cdculutor nnd load tnann~er cm hc justifid by the nhscrvntiorr
thru, when only running he cafculnnlr (M unb”kmccd cxccutirm of dw application), nothing will have to he
sprcltlcd. ‘Ilwrr the calculator is thr itq) Ii Ihr hlcmtt.-hy, ml will IuIvc maxhnnl usc of Ihc (‘l)! I

Our work has beat partially inspired by mearch projecIs in the area of object Cuientcd programming
languages (OOPL) and cpating systems(000S), We will now refer to both.

llc dynamic ~h of tmnsforming funct.icmrditiesduring the objects’ lifetime is fairly commonplwe,
For example, in inure, a butterfly begins life as a caterpillar, molts into a chrysalis and reappara as a
butterfly. In object ociented jargon this process can be statal as “an object that dynamically changes ha
ty@. In class basal object-cwieated languages this dynamic Mavicm can be capfural by tmta~bjecta
[12].

Another ama of study arc 00PIA thatusecklegation basedinbritance and& not even support the concept
of a class. Upon reccivktg a mwage (= method invocation), an object compares it to its known ttwhais. If
no match CM & fmtnrl it ‘ckkgates’ responsibility for the maaage by passing the ttwssa~ to another
objectQmmtype).An objectmay dynamically select a promtyp. ?his clung= the way its trmsages are
procesac4 effectively changing ita ‘class’. The language SELF u9espromtypical Mteritarm [I 3].

lle Actm model also supportsa ‘becorm statement’, which results in ttm fact that incoming messagescan
be hsdled differently. [14].

SorrE object criemd operating systems also use a dynamic approach for modifying the Mavior of
resources. llw Muse distributed operating system [15] provides an open and selfahmncing dynamic
environrmnt. Muse provides reflective computing that presentsfacilities fti self-modifying an object with
its environnwnt. Objects reside in the context of a collection of mta-objects to handle dynamic system
behavior and to provick an optimal execution environment for the obje’.t.

Computational reflection is also employed in Choices [16], a family of object+xianted operating systems.
For example, when Choices boots, few o~rating system facilities are available. llw’efore the initial heap
manager uses a sirnpk aJgorithm that has few features and pluces few requirements on the operating
systems, As tk brmt prognsses and both virtual memo~ and process-switching f=ilities becotm
available, the&fault heap manager is changed to a multi-thrded a!locator that provides an appropriate
balarta of time atKI space usage properties for a multi-threackd kertul. Thus, t~ Id manager
dynamically changesits lmhavior.

9. Conclusion

We propo.scd a tmchanism to control and observe interacting objects, Debugging functionalhies arc
dynamically applied, Method invocations on relevani objects arc intercepted by a recta-object and all
interactions are accomplished in a transpnren[wuy. Ilis dynamic ap~oach minimizes the resource
util izatIon for debugging.

“The proposed mechanism is integrated in the XENOOPS environment, m execution envirotumnt for
ilLIUptlVC pIUalld progrnms. lk
rnvlronlmnl.

Acknowledgement

debugger isn’t restricted to a specific debug policy and/or graphical

Wr would hke 10 thank Herman Moons for his thorouth reading and many rcmnrks during Ihe prrxess of
dcvelopl ng the debugging crxtccpt. The prcsenw!drcscnrch nre results of tlw 13eigian lnctnlive Pmgrnm
“lnftmnntiorr “I”echnology” - (’omputrr SUlcncc of the futrtrc, initialed by the He4tiun Slate - l~nw

Mlnltlcr’s %rvwe - Science i)ulwy oflicc ‘l”hescicrrnlic rcspmtsihility is nssurncdhy its nuthm.

[1J Y. Be~rs, W. Joosen, H. Moons, and P. Verbaeten, “lbe XENOOPS Project” pp. 144-146 in
proceedings of the1991 International Workhop on Object-Orientation in Opera ringSystems, Palo
Alto, CA, U.S.A. (1991-10).

[2] P. W, “Computational Reflection” ~echnic~. Rqxw 6’7-2, Vrije Universiteit Brussel(1987),

[3] P. Wegner, “COUpts and Paradigms of Objcctmriented programming” 00PS Messenger
ACM, Vol.1 (1) (August 1990).

[4] R. D. Wfllhms. ‘*Supersonic fluid flow in paraflel wifh an unsfsuctured nmsh” Concurrency:
Practice and Es@ence, Vol. 1, pp. 5141, John Wiley (September 1989).

[5] W. Joosen, Y. Berbers, M. Snyers, and P, Ve~ten, “Tmnsparent Object Migration in Adqh’e
Parallel A@icatkms” Proceedings of EWPC’92, the Euqwatr Workshop on Parallel Computing,
W. hosen and E, Milgrom, E&., pp. 300-311 (March 199Z Barcelmu Spain),

[6] W. H. Clwung, J. P. Black and E. Manning, “A Frameworkfa Distribute Debugging” IEEE
So@vm, pp. 106 I 15 (Januari 1990).

[7] B. P, Miller ad J. Choi, “A Mechanism for Efficient Debugging of Parakl programs” Proceedings
of the SIGPUN’88 Coqfercnce on Progmmnring hnguuge Lksign and Implentution, pp. 135-144
(June 22-24, 1988).

[8] M. Ellis and B, Stroustntp, 77w Annorared C++ Reference Manuaf, Addison-Wesley Publishing
company (1990).

[9] R. Schwartz and Frie&matt Mattem, “Detecting Causal Relationships in Disuibuted Computations:
In Search of k Holy Grail” Infemer lietic~ Nr. 21MI, University Kaiserslautern (November
I!WI).

[10] R. H. CampHl ad A. M. Habemmttn, “The Speciflcadon of process Synchronisatfon by Path
Exprwicms’ ● &c?ue Notes in Computer Science, Vol. 16, pp. 89-102, Springer-Verlag, Berlin
(1974).

[11] S.Krakowiak, M. Meysembourg, H.Nguyen Van, M, RiveilL C. Roiscm, ad X. Rousset de Pins,
“Design and Implertmtmicxt of an Object-oriented, Strongly Typed Language forDist.ributed
Applications” X20P, pp. I I-21, Laboratoire de Genie Informutiique (October 1990),

[121 B, Fcmte and R. Johnson, “Reflective Facilities in Smalltalk-80’” 00PSLA ‘W Proceedings, pp.
327-33 (1989).

I I.1] C. Chamkrs, D, [Jngtu, nnd E, k, “An ct?icien! implementation of SELF, n dynamically-typed
object-oriented language basedon prototypes” Proceedings of 00PSL4 ’89, ACM (1989),

[14] (1, Agha, AOORS: A MwIel of Conrurr@ (“ompututimrin Distrihuwd Svsterm, The MIT press
wnes in nmticinl intelligence.

[15] Y, Yokote, }, Tcraoktt. A. Mikuzawa, N. l:ujirmml, and M, Tokuro, ““he Muse object Architcclure:

A Ncw operating System Structuring (“onccpt”’ AL”M (Ipcr(tting .Sy.wemRwie w, Vul. 25 (2) , pp.

22-.16 (April 1991).

[16] l’. Msdany, N. Islam, F, Kottgiouris, and 1?.Il. (‘ctmpbll, “Reification nnd Ilcflcclion in (“++: An

()priitmg System Pcrs~ctlve” htrrmd Rq~vt, Dqwtimrnr of (’omputcr Scirncr. 1Inivcrsity of

IIIIIIOIS ut (khttna-(’hampatgn.

II

A Parallel Software Monitor for Debugging and Performance TOOISon
Distributed Memory Multicomputers

Don Breazeal Ray Anderson

Wayne D. Smith Will Auld Karla Cailaghan

Intel Corporation Supcrcomputer Systems Division

15201 N.W. Grccnbricr Parkway
Bcavcrton, OR 97006

Abstract

Program morutorsmust fidfill a numberof mqmurts tobe ektwe. PWfamancc,mhabthty,gcncrahty,Portabdny,and
rctargcrabd.rtyareM dcsuabk andnecesaq atnbutes.on masswelyfxuallelcbstnbutcdmemmymadunes,thesemquKc-
mcntspresrntsped challenges.As new,mcmasm@y~el - am archttectumsamcreaud programmotutommust
beableto moveto k mawve systemsWithoutrnasstvemrnpkmcntatmn.

ThISpaperdescrrbcsfhcTeds ApphcatwnMomfor(TA?vf),a pmllel wna thatMUu a softwaremorutufm pmdkl dc-
buggtngandperformancemK. ~TM~wtia@bh m- MMwti=h M&_mcmmltim-
w thebcftavtorOf nunwrousq@cauOft pKMSSBSwtth mph htncttoncalls. The rm pmvtdathebtLWfor thenext gmr-

eratlonof pcO#ammrng tools tqeted towmd Intel RuagonrM Systan%

1. Introduction

Software for parallel computers has been krr area of
wtive rescmch since the introduction of the tlrst parallel
fystems In the rind- 1980’s. Parallel systems prcsem spe-
cutl chdlcngcs for developers of software tools such as 1,
debuggers and perfhmance monitors, Some of those
ctutllcngcs mcludc the following:

I T(x)l Complexity

PLrkd]cl pcrformam and debugging LOOISam

more ddlicull to &velop than fhcu sequentmf 4,
counterparts hccausc the state of a parallel
uppllcitoon IS more difficult to deacnbe and
lxm[rol The tided ctmlplexlty incrmus the
dcvch~pmcnt umo and mamtcnruwe
rrqu IIK’mC~Lq for pmralkl LooI%

1 ‘WSSIW Amounts of Data

I’erl{wmancc monitoring, in particubr, can
rm{IIIm rhe collccuon and mductmn of lcrKc
,umwnts ot data Imm large numbm of
LOIILurrcnt rrrtwemes.

Debugger display of program data, when waled
to hundrcd~ or Umusands of processes, can
result m m ovcrwhehnmg amount of data as
well,

Pcrformancc

Tool performance issues require spccIuI

Wcntion on disrnbuted memory mwhlncs
because of’ lhc potenually large numhcr of
processesto be monitored.

Machirx Dependence and programming Model
Dcpendcncc

Ilc reiattvc Iiwk of hardware und sot’twarc
Wtndarh for parallel symcmsmakes it dI tlicult
to rcusrgetpwallcl t(x)ls for ncw .qyucITIs.

Also. the WIdC varIcIy Ot c~mpclmg
pnl~mlng peucthgms inr pnrulic I
computatmr wlch M cxmtml v~, drttnpttrtdlchwl~
iUd ~X@l Cl(VS. Mllpllcll tnc%.Ugc.f)wq\mK fnukr’s
wntmg general ~w~)se ixardlcl I(x)ls dlltll 1111.

Tools Applicauon Monitor (TAM), initially rargetcd for
use on Intel ParagonrM systems. lhe TAM is a parallel
software monitor that will serve as the lowest level in a
Iayercd tools archimctum. -cl debugging and @or-
mance mols wiU rcsick at a higher level and will rely on
dw TAMfor machine dcpcndcm ~css monitoring and
control. A paralkl intmke lbrary will connmt Urclay-
ers and fiOW parallelIooisto @orm cqxw?timssuchas
“single step” or “read memory” m ntuncmts application
processes with a singk function call, lltis a-h
itliows ti tool devckpr to concenuatc on what ftm-
tions to provide and how to present them m the uscx
rather than the machine dependent aspxs of parallel
processcontrol,

The paper is organized as follows: in stxtkm 2 we
descnbc thetargetsystem,an lntcl Wagon running Par-
agon OSP/1. Se4xton.3describes tho rnotivadort for the
TAM.Section 4 Iisls tie TAMtksign goals, Section 5
provides an overview of the Tti. S~tion 6 dcscribcs
k instrumentation tcchnqw used in the TAM. Swion
7 provides an cxampk of a debugger implemcrtlcd using
the TAM, Sccticm 8 gives some ba’kgruund on rdsmd
work, and scclion 9 summtizcs our ccmclusions,

2. Parogon OSF/1

~ - OSF/1 m Sy~ is ~ m dititNI&d
(Imx opma.ing sysncm.I%h nmkcof lhr?pardkl ndti.m
runst !Wxh .! micmkcmcl rmdan extcsidcdOSF/1 .wmti.
“~ opmum~ system pruvi* a singk.sy.stcm image,
mmnmg hat there ISu single narnc sf.wc fur pxcss Id’s,
Iik systems.urrdrdl othcssystemresources,I%rtdlcl @i-
Lwnonsurc gang+chcdulcd in systempmi(hmc which arc
li~glcaldivishms o! mdc resourcw A ~ud panitim, the
ww r /wWion, ix UA to execute Iogin Mls and
n(m-psndld Unix ~xeeq, Thk @tkm ix dynamically
I(ud.hulmwrd and pruccsscsmay migrate fiudy amtmg k
IMklesm the wrvl~ pOutMm,

1’:11;111[’1;llll)ln;lltl)ll\ 1111111111~Illuh l%ll~(sl ()sl~/1 t’iml
111111111’Alk’Vlil 1~1~(1 llk’~%t~(’ lML$Slll~,l(HIIIMIII)I(’ Wllll Ik

lllK\%lgC [Xl\\UI~ 1111l~(Wlf)(1S N(’fItWllfHWIk’i fllJM”hlfk’S
1111111111~I)W S?(Iq~*ImmgSYWNIII I I 1.

On thePmgcm system,parallel applicationsare invoked in
thewrnc numncrasany other Unix pmgmrn. However,par-
allel supplicationsm linked widr aspcial Wmy contiing
roudncsthatturnfhcinitial UnixpOccss into aparallel
a@cwion.Thcinilialunixpoces& @so blown mthc
controllingpmmss), may tmmmca paralkls@iukm
ati implicitly m throughexplicit functkm calls, c@rul-
ingcmhowti pgrmrnu buildsk qplication. In eitha
-, the amtmlling ptxess executesa pandlel fmk opa-
dcm,possiblyfolbwal by an ex~. to createthe-cl por-
tkm of k @icaim. lltis “bad model” pesents a
signi6cantclksllengcin tiging the applicationunderrnon-
ita control. _ sys~m cxtcnsicnswere rcqurcd to
implranerttthis.

3. Motlvatlon for the TAM

Given he Qr@-systm ~ -M by I%ragrm
OSF/1, me could impksnmt a frontutd tool h dimly
callspm@torrmitmmuh@lcpxsscsrunningcmmul-
tiplCM&s. -ever, this qqmuch ~ two kdc k%

1. Forhundredsor thousandsof processes.the
h’om-endml wouldhavetocall ptmeO once
for-h @rm on -h process,Thiswould
C-an unacc+abk bottlcmk.

2. ‘lltc opations offcti by prsw@) arc too

@nlitivc fm effkient remote usc on a paritllcl

system, A mmivcly @raUel monitor requires

high-level operations tha[tan hc dnnc locally,
tm the same nd as the monmmed wcss, m

mmimim intrusion on the messagepmsmg

network crmscdby numerous k~w-Icvcl mommr

requests.

‘R)CfklctHmhltirm thatovauune~ the.wflaws, themfmmw
must h Impknwntcd tn @cwm hi~h-kvel npertmrmsIn

pallcl,

4. Design Goala/lWqulrmnents

T?lisscdcmckribc!s thcn@remtltrtlucmmaincdtk
designof rhoTAM.

●

9

.

●

.

.

Reliability

This is an obvicws rcquircrrtcnLbut impxtant and
difficult to achieve in a pemllel remote monitm,
where an operation might swxod fm some
p~SSCS but f8il ill difkt’ing WaySfm OthOIS.This
Ovcxridesall other rquircments.

Perform-

ITtis is another obvious but difficult rc@drerncnL
We arbitrarily set a limit of 1 secondrcqxmae time
for imaactive commands suchasrcad memory, get
s-k -Wks. and w fa’th.

Portability / Retargctability

Parallel archimdums arc evolving rapidly. in a
sense,this stifk theevolutionof pamlhd
programmingtools, since tool buildersam
COfl~dy scramblingm putthetMsiCKds ~
ontothe Istcstsmhitccmrc.TheTAMis intendedto
live psst thecuncmtgetmabn of Jntclsystems,

Generallntcrfwe

A god fc8 the TAM inrezface is to pwide mol
builders outside Intel the ca~bility to port axisting
tmls to the intafxe as well as Crete new tm)ls
using tie interface. Research into puallel
programming tools i9 a growing fielti snd this
mtcrfacc must enable researchersto concentrate on
W impoflant problems without having to reinvent
he mortitw for each tool.

Inmgrution o!’ Monitoring Fwilitics

By combining monitoring facilities into a single
monitnr, any progmtnming tad may make U* of the
t’wilities tradiimnuily tied to any other MI, For
example, a dchuggcr can ntn to a bmak@u, then
mm on profiling, All mols get a consistentpIcmrc of
Ihc prr)grurn.

M(mm)r Any Progmn

‘I?w “1’AMmuw hc able to monitor any applicatmn
Ihm t;m run on the machine, without special
c(nnpdatwn or linking to special Iihrarhs A
nwmltor t’mlm~ Ihls rcqulrrmcnl is usckss for
pr~ductl(m lXX!CS,

5. Design of the TAM

The TAM isannpdtetlof twornajmconqxments:anintcr-
fme litwq, anda ~. Mukipk? i.mstwtccsof h TAM
sctvexe~onconmhrtotkinh @tkSIWhCa’CthC
q@imtim rims.The individual TAM scrv= are SW
wtm a call to tk intafwe library Iculs an applicuicm,
and each saver is responsible for monitoring all pro-
cessesin the application on its local node. Services pro-
vidad by the TAM include ~tional UNX monitoring
=tivibca such&Yrding and writing the application data
-c, management of breakpoints, watchpoints and ua-
c.e~infa, p’ogrmn single stcf@rg, artd protiling, as well
as features spdic to a paralbl messagepsssingsystem
swh as inspectionof messagequeues, data reductionand
evmt logging.

Oncoftlw TWsresshas specialraqmnsihiliticsintit
itrnonitasthecontrcMingp3ccssofapmWcl application;
rhisTAh4iscalled thepaww 7AM.Whmthcconmdling
qbeginstocmamhewoftiqkti.
*~ TAMisqnmsibk fcr_a TM4sewan
achrKXleot”the @tirnLItalmmbUd’ml theccmrnuni-
catimpmuixmwm it#andtirwz of the TAMs.m
pmsmclucdm in@ememtunoepmccdumcaIls (R.Pcs)
inthepmllelm.

Fi~lihtmtcatheduli@OftbTAM~ifS-. m
Withliletjam+?ndtadmddmqlpbtiml xillgmonitom.d.
Intk@e,ts#dmtnwmprcamttheRWMacItportnct-

mmuxingtiTAM~, thinmrcnvsrqxcscnt~
~-~~tig~~~,
mdthinlinm withouaTowtEads rcp8sontthcptrauo

communiaion betwam -h TAM waver and the q@ca-
lionprocUws undr!ritscontml

5.1 Int.rl- Llbmfy

W TAM intafafx tibmq’, fi&wI.a, providesm CXUllld~
bn~ intake to h -km of the TAM. Ilc inter-
fmc hkks the implmnentstkmof the RPC intufk.e from the
culkr (the RPC mdunism is MN in M in ,smmon
5.4), In wkiition, the intufxc provicks k.ilitics Iiv manag-
ing pqgnm dam rcatrncd as a rmdt of it data mqucs(w
well ssetm rcfmting mdanisms.

The dtta buffwing mmdumismis Imsedon the om usedin
W IPD prallcl &lntggcr WI the iPS@’/2 and
lPSd/lW)[51. It hm hum rc-implancnd d exlrndcd m
UtiSfy the gcnual rcquircmcntsof the ‘rAM. “h m’ch
nhm hastmenim~vcd throughdynarm huilcrallmxuoo,
n’rnoving W arbitrary I K-pcr-rKxIc limit on datu t??qucsl$.
A 1001can h rnanipulatcthem hullers, wa ‘k mtrrtkc
rw.mrtcs,to cnlkcl ilcntml data wnl Innn dilTcrcfnnodm
w Ihnt it mm! (rely k (lisplnymi owr, IWlunhnl (k

IRWIIIX(I(ICTIm pwlice, I(H mnnplc, whm mmy Imxwr.i

,,,

are StOppCdatthesamet’x’dqmt and their suwkmxlxxk
is identical. l% buffer mechanismprovidesordyprimitive
facilities for managing data returned fnxn the TAM. As a
result, much of the responsibility for this management is lefi
to the front+md tool, such as releasing the bufTers to be
de-allccated when they m no longer needed. The TAM
libray requiresthe firm-end tool to live up to thesempon-
sibilities though strictam checking.

Any TAM request fcx data involving multiple nodesmay
result m data and/of error information being returned as
somenodesfail and otherssucceed.Encr infmnation may
varyhurn nodetonakjust aspmgramdafacan. Ibtwurn
whofthe ermrnumkrs withthe listofnoksassoeiamd
with eaeh error is exaet.lythe same @km as mtuming

prOgramd2UZ3WlthdRhStOfIIOdMWhkh preducediL
Whenanrxmroecurs,aTAMlilxarymutinecanbecalled
mmmmm_etig@a lktoftimwtich
theerroroccuned.

5.2 TAM Servers

EachTAM servercmsistsof four major components:

1. A ncxkin thebroadcast~~anningtree.

2. A processlISL

3. An external intetiiwe @?C).

4, A selectable uaeing and logging facility.

Each TAMservermustrespondto two externalstimuli:
TAMRPCsanddebuggereventsgeneratedby monitomd
~. SW h primarydebugginginstrumentationis
done usingthe Ptrac@ systemcaU debuggerevenrsresult
ina signal,SICKHLD, being sentto themonitor.The TAM

servers bloclcawaitinganR.PCrequest.Ua debuggerevent
occurs,controltransfasto a signalhandler,which calls a
“handleevent” RPC on the local WC port and returnsto
nxeive the nquest and handlethe even~

—— .— ———- -

Figure 1. ‘II$M ! lsaKc Mocki

5.3 Luadlnga Paralkl Appllcatlonfor Dotntg

~of~—~tr-d~r~is~
“to&ipro&pam”irlErhmA desaibdinscuionz loading
a parallel qplkaliur cm%igcm is a relatively slmighti-
wafdopm=im. Louding it fmdEbu&howevu, isma’c
Complhtad.

Apmallelq@catkmisinvokedbyrunnin gasi@eUnix
FsOcCwL-fhispcausarouti mthstak.atesapartitiom
ofnotk The~TAMuca intunml~~stcrp
thezrntum hxnthafmnim mthatitmysma
TAM~runningon emhmdeofthc~Mof
thesesmmsnmi6es tiOSoftb IDoft&~ it
wisksto mcmitm.Tlwptemt TAM rnaydnmremmetlw
inirial COl@lli.J18p?wess m that the ~ ~
areloadedon thencrtksas wclLAadleX atwt Up,theopu-
atingsystem suqmdsthem mdnotifka tilcaal TAM
rhatanew traced ~haskcn creatc4smdtlw TAM
smlsaneventmessagebdtothcin te&clituary.

5.4 RPC lrnpkmont8tlon

lhe TAMlilmy ~*anintcr&kc fmmnotc~-
durccaUatothe TiAhLTheRKimpkmmtatiat isgeim
adhngthe MtwhIntuf=Genemmr MJG)[91[101.
kUGreads the RPCspecikaionandouqnm Ccmkto
imPhWl[h ~S using-h pats.

R-Ks are synchronouswith re,~t to W irmke Iibnny;
irnintcrke roubrtcwiJlnot mum to tlw fhnwnd tool until
the RIW is complete. However, ‘e.h TAM saw executes
k RPC asynchnmnusly. lk TAM ~ meives the
rcqum~forwardsitto theTAMsmvmdwmtmam fromit
inthespanninguu. executeathsrwqmstifitispartoftlw
request,then roccivcsany - remmnedfmn &Mmstmm
M furwardsthose.plus its own, uptrcam. [f W rqutsl is
I(lr progmrn data. a sukqwl call to rcccive the clatnis
rcquued. Data is rccewe(l arxi stcsul in M&s m h. TAM
mcrfwx Iilmuy.

llcre werethreecommunicatkm ~hmisms availableto
implement the TAM cunmunkdrm ~: Mach ~,
wkcLs, d Nx rlmwgepwillg..kdm Wem diunutd
:IImosI unmccliately~ W mftvmc overlwd would
dcgri pmf(mnancc How the ~i6ai limits. NX nm-
wgc pmsmg is very tulmuve ~ of ils high qxxd and
W ahscncco[armed fariniuahatkm, butbmmuWthemmr-
Ilortuls tnnrntrl thcsameappl- ~mthemuni-

Iord pwcsws (w) that they arc gang-dmdukd togethu),

d rumM*-\pKc cfmfhct Iwtwecn the ~liwtkrn and tk m(m-
l[or W(NIM hc tvvmctl. “lM~, Mh pnt% wm’e ti tmly

(’htw’r wmh the nm’csxuryImrtwrrwmc and .wcrmty la-
Illrc.~

\f;k.h ~MwL\ hM fIWdy Ik ~~(1 d’ ~x ITICWIfIC fMISSIn~

INr(C Ihc L’OIIIWUOII”has hn tllwk, With lk * attlW -

tionofdm -tyduuutlypiccsm t.lwhavebetm
~~-ri@BWti~Mj~miL~Wvti,h
inirir@hcm requiredfcr theTAMaxnm~ nawork
to&this -issi@iumL
~mdcrtolmtkastTW requeasmpotemi@thouam&
of TAMwsves, thecanrnunicmkmmwcxkiscmtodin
thcfmnofa spnning ~,roomdtithcncxk wherctk
huu+?dtcml -. TILisauowathcinterke Iilxmyto
smdareqtwt metukg(n)rmka3, wkenisthenwn-
bmofnO&salktaMl fc8theapp@Ukn, d have them
ftiitin paUeltc3ing tbrxmtmtionfite algmithm
rkxibed in[ll. Ak@sune commands mayk
timdtocmlya~ofthe nakall~follow
thiscompepu houllmd~sinc ctheovcrheadofcal-
cuhuingdiffemmtrd lst%lscdcmthenocklistcrulwelghsthc
extramuaagepssing.

Thc@waysumd tomdevezitinfmrnati cmandpogram
b mthefrrmta CmemlyCircumvemh spanningm
nctwcnk-flles einitialmmctkms ale cdidm?l fix future
optimimtio nrmimpactofsuchccmmaim isnotyct
*.

6. Inatrumontation end Examlnatlon
Tochnlquos

The TAM@&s insmlmnti tmtthdl yusalby
Ckbuggemml perfolmanccrnalitcx?%In this SectionWc
&saih the rncmitcming&chniques- by theTAMfor
therctyp.softool%butmcategorize thcmillthiswy for
rcf~ only,IntheTAMenvinmmcmK fdities urc
intemhangcabk.

6.1 Debugging

l’he TAM u= pb’rxc(.lto @mn Mnq@ng opmduons.
~d~6sdti&titiTAMkablebtick
CUmoctial through tk opcmlrrg Xystcmto m parallel
q.q)lkmim @x&sC? waned al a remote node. klctly,
rncdibtkms to the OSF/1 ~ wm rqwed u~

allow the TAM to& notifrcd of any new
(mud) pncesws in U qxxlf@ pruuw group
umlto tracethem

allow the TAM to wuit for sibling prwcsscs

OSF/1 ~wi(ks two ~tial mdutnkrm fm nmniumng

Prw-eaws:X(), using h (Jnix facilities of the OSF/l
wm. and Mwh cxcqm(m lxws, uwng rhc Ieulitics of I!w
Mwh 1,()micnkzncll 101.I%nwc() sccrncdto hr h CINNLT
h ii pmabk, rctmgctahk nnmmm “W ~xkl Is ~i@~
iuwl c“himgc-$to wqqxm (khlgging purallcl i~ppliruu(ms
could k iwdntedin k OSF/1 wvm, lcmml~ k nmm~hcr,
nci uhme, which helps WIti Imuntmlwhillty(Jt111~’()S

~~ti.
~ isanpioyd trGi-

mmt higmvol qmaioln mMaMdttE6uttumlmoL
Fare%mlpktotiaslwklrcskk udllga-tudmwy”
lncmimc4nund mhuwaMi MdmmlMbmmdlthe
monim~. TkTAh4povdaa’M llmckk”
canfnmlw ttmashgkullmmnn whammdy
mqllh81rNIIyalh. Thi9rdiniqu uLdflwcawuing
akha=assllme-,~ ~-~
C(cbfmcci msinlmchdmmwydu maw
iPsc#60datJutwithapdlkhm’ke.

1. Tltc TAM

2. A prfonnanw monitming !i~ linkd with

every application pxas

.~
Idgurc 2. WI) (’oulpmlenln

fcxd-time mimabon,mboth. llemmwillbc
usadinthisvnlyto minhize theintnukmofwriting out
buffexcalms 6um m @icalmn.

Ro61ingm a@mtkm is -what simpler.To @k a
paraUelq@catim theTWl~calltk~ama~
libray o dynmkdly ~tivae theOSF/l potiI() rncdia-
ni.m. BomeventuwingandOSF/1pm6hngcm~axive
simultanMAy.

7. An Example

llc Interactive Parallel Debugg= (IPD) is a symbolic,
Som-ievcl debugger fa palalbl programs Wsittemin c,
FOKT’RAN and Assembler Language[3. IPD offem the
ability to Iod, start and stop parallel pomsaea, sing-
le-step tiir exauicm, set kakpims and wach@nts,
display and change data, and examine mewage queues.
The first implementation of IPD was for the Intel iPSC/2
and i.Psc/w) computers. ‘nlat implemaltatkm was
developed prior to the TAM and M m rely on cak
within the NX oparing system to handk bw-level

chores such as setting breakpoint traps, singk-stepping

an application, or modifying an application’s data sptwe.

LPD has reantly been pond to the Intel Pamgonsystem
ad inteti with the TAM, W interke conaiataof a
few high-level function calls to TAMlib routinesand
repkes over 6,000 lines of cperatmg system code that
prewously supporled IPD, A seprate I.ibmy of routines
for symbol table prcreessing(lihd,a) haa &cm developd
and is now being used by IPD. A gmphical user mterke
IS currently king developed. A coinpment diagmrn
appears m Figure 2.

Theoperation of IPDandits inti~e withthe1AM can
be characterizedas a Irmpconsisting of three basic
acuons:

1, Parse and validate a user request.

bA. Forward the validated request 10 the TAM.

SIcp I IS standard to any intcrwive WI and is noi
tilt’cc(cdby the uw of the TAM. In Step 2, TAM services
we requested through calls to TAM interf~e library
(unrmon% The 1lbr;u”y functions translate the rcquesLs
lnlo remote prcccdurc calls and hwvmrd dmm (m m the
TAM, TAM library timchom used by IPD include the
lt~llowmg:

. Iwl)l.oado”

bids an application program. The program maybe
either a sequentialor parallel ~gram.

ts@JHJt@ and tamSto@

SMrtscw.stopsa~tofprocesaes.

tamAddBre&pointo and tamWdWatchpointO

A&ls cd bmkpoints or W watch@nU to a set
of pxeswa.

tamRead.MemmyO and tamWriteMemoryo

Reads orwritesto tidataspaceofa*tof

~.

tamReadMsgQo and tamReadRocvQo

Reds the pending messagesbeing semtor ~eivd
byasaofpmmaaes.

umReadRegisterao and tamWritoRegisters(_)

Reslsorwritea thcregister fdefffasetof

~“

tamhwtructiollstepo and lamsOurcesrepo

Stepsa setof prtxews either one machine
insuucuon or me sourw line.

tamReadTkacebacko

Reds the -k frame fcma set of application
processes.

Step 3 is lhe mechanism through which the TAM informs
LPD when the sw of a process being monilored
changes. State changes arc communicated as events,
returned when IPD calls the TAM library routire, tarn-
RecvEventso. Evems am generated whenever a process
is created, steppwl stopped m killed, or when it is inux-
ruptal by a sigrd, twcak@nt or watch@nt. T’ypicaJly,
IPD will receive any pcmling evems and uplatc its mrcr-
nal pracesstablw between -h user reque..t.

In addition to the seMces described above, [PD relies on
tie data buffering and enur hsndling functions included
m the TAM interface Iitmry. llese furrcuons nllocwc
spwe for the dafa and crrrx CWICSreturned from the p:ir-
allcl application and ccmsolidstethe buffers wlwn dcnu-
cal dala m errors are reh.uncd from tiflcrem prrrccwcs.
lPD hen usesTAM library routines to access*C Lwrsol-
idalcd data or errors.

Piigon lPD is mum p)rtable and cxtcnsddc thun iLs
IPSC predecesm bccau.seit nn hmgcr relies on CUS1OIII
opmating system suppon, All monimring of tipplILMLI(m
PCS.US is mcomplishcd lhrough L!Ccalls m tlw “I”AM
mtcrt”accIilmry rmmncs which hide lhc mnplrRIIIm {d

.),

machine dcpmkmcies. inter-prcmssor communication
and data/crm reduction. Mditionally, Paragon IPD
incorporates new application pQ6Jing features which
allow closer integration of debugging and performance
monimring functions. ~ intcgraticmof thc9c functions
ismdepoasibk bytheuseofthc TAMas acommon
monimr.

8. Reiated Work

Softwmetrends ingaeral m moving towmd ptxtable,
re-targetable, and @naal imp~~ using m-
dard interfaces. Dc+spiEthis, relatively few pamble tads
exist for parallel syacms. Notable cxe@oru inclti
Exprcss[13], PIC4ParaGmph[7] and Pablo[14]. We
blievethat Lhisisduc inlargepatttotlw a&utc-eofa
usable public interf~e to genual monitcning fwilities.

Integrated monitaing is not a ncw i- The IOPSYS

ProjcWA[31. in particular, has impkmcntcd a sophiwi-
catcd monitaing f=ility thatis @ by multipk tds.
TAMtcchrmlogydmws kavily uponthe rcsultaof this
work,and will likely continue to exploit the results of
dlh research.

Hovcn[8] k impkmemed a Nkh 2.5 imdaz fmpcccss
monitming thatisinmtkd tosrqqmta varktyof~
runningonanhokczm Lchrosexmakatlmlvcmrllof
Lhc.wlmcprubkmsusingunix5ignalSmdpttaM),wihlhe
CXcCptiC41of thrcd-kvcl rncmking. Brea@int debug-
ging of H isof qmstkmablc vak due to its intrusivc-
rwl, butclrXlrly pUac@isnot theanswcrf(Y Lhmads.

The in.strumcnratkmmechanismfor event tming is similar
incorwep tothewwkof C@k and Milkr[61in thatit
mmliks any cxisdng ~gram fw evau Uacing, ahhmlgh

he mcdi!iaion lalcea pke in memrxy rathu than he
objmx tile and k mtxlmd of instrumcnti is mnewhal
dliTerulL

9. Conclusions

“Ih “l_AM apprnach provides several advantages wkn
dcvcIopmg parallel ,soflwaremols. Some of Lhoseadvan-
Llgcs arc as IOI1OWS:

1, Rcduc-cdToni (%mplexity

Pimdlcl umls can lx rievcloped mom quickly
when lhc complexities of machine

dcpcndmrcms und the back-end applwatkm
monltormg tiisks arc hdrlcn, The TAM hides
this complcxuy by pruvidmg a high-level
Intcrtficc hw such tools. Also, the TAM code is

2.

3,

4,

5.

shared by multiple front-end tools, thereby
reducing the total amount of cudc LO be
maintained.

Data Reduction

The servicesprwickd by the TAM inclwk cka
buffering and rcdwtion- These .smfices assist
the front-end tools in colkcting and presenting
data from multipk processes.

Tool PafcwnuMM

The TAM netwmk is highly tuned to minimize
the inter-proceasm communication mquimd for
a@icadon monimring.Ilw state information
maintained by theTAMreduc= the numb of
cumrmmieationa _ htwcerl the
tiom+nd tool ml the TAM and the fast

-13 = Imdcast algoeitim optimizes
communications tetwea the TAM prmcsses.

Tool ~bi.hty and RMaq@abfity

The high-level TAM interks ehminatcs mow
mhirw depcmdmcica horn the homed tools,
albwi~ them to& retarsctcd to uw SyStCltls
more easily. Also, the TAM u a Unix-based
puduct, written in an ob~t-oriented fashion
using C++. llw uSC of Unix improves the
portability of the TAM itself, Ihczcby making it
easier to retarget any of the hont%nd tools built
on top of the TAM. The TAM’s modular, object
oriented design ensurc9 that Withal features
can beackkd tothe TAMasnemkd tosuppm
future tool rcquircmems.

Tool Integration

Concentrationof monitcwing facilities that are
traditionally tied to debuggers m @OrlTIIMCC
monitom in a singk monitor increases the
~wer and flexibility of both types of tools. For
cxampk. a performancec monitor can prof~ a
sectionof a progarn by running to a brcakpoinl,
turning profiling on, nmnmg LO another
breakpoint, and kuning profiling d’! and
flushing lhe Wllk

It is our intention that the public TAM interface bc used
by multipk toui.sfrom different ,sourwi. Experience has
shown that ~demic and rc.searchinstin.rtiansare conun-
ually building new umls :md enhancing old ones; TAM
wchnology is mended m enable nm.1ease the.scct’fortx.
T{x)l builders should be II-IX m conccmrale on munugmg
pwgmrnming paradigms. pnrallclism, and u.xr lnlcr-
!uccs, ilnd %h{)uldnol hc burdened with rc-mvclllm~
mormonng fwmditicsfor cxh rmw tnol,

1. OSFand OSF/1 are registeredtrademarksof the
open Software Foundation, Inc.

2. Unix is a registered uadcmark of Unix System

Laboratories, Inc.

References

[1]M.icheclBasnctLDavidG. Payne,andRobert
van& Gcijn, “O@mal Brwkssting in Mesh-
Conncctad Architccctucs,” Parallel Processing
Letters, Submitted

[2] l’hanas Bunmerl, Robctt Lindhof, ml Thomu
Tkeml, ‘The Distributed A40rdtm system of
~PSYS,” h CONPAR WI - VXPP ~ bCt~
Notes in Computer Sciaue, vol.4S7, S@gcr-
Wrlag, Bcrtin, Hciddhg, New Yak,
Sepccmbcr 1990.

[3] Thomas BemmerI, ‘I?Ic’TOPSYS Architcctw;
In: CONPU W - VXPP N, Lectuw Notes in
Conqnuer ScieRce, wI, 457, Spfingcr-Valag,
Berlin, Heidelba’g, New York, Scpumbcs 19%).

[4] D, L. B- D. B. Golub, K. Hauth, A. TWanian,
Jr. and R, Sanzi, “’f’he MACH Exce@mt
Hamlling F=ility”, Proceedings, ACM
SIGPLAN and SIGOPS Workshopon Parallel
and Distributed Debuggi~, SIGPLAN Nodces
Vof, 24, No. 1, hhy 1988.

[S] Don Breazd, Karla Callaghsn, and WayM D.
Smith, “IPD: A Debugger for Pnrallel Hetcqc-
ncous Systems,” Proceedings o! tk ACMtONR
WorMop on Parallel and Distributed
Debu##ing, May, 1991.

[6] Jon Cargille, Bamm Miller, “Binary Wmpping:
A mhniquc for Instrumenting Object Code;’
ACM SICPIAN Notices, Volunw 27, No. 6, June
1992.

171G,A, Geist, M,T, Hcafh, B.W, Peyton, and P.H.
Worky, “A Uses’s Guiti LOPICL, A Ponable
Inwmmcntcd Communhmion Librasy,” Oak
RIdKc National Unxmmy, Jun8, 19Y1ORNU
“rM-11616

[8] Rand Hoven, “-h Interfaces to SupportGuest
OS Debugging”, Pmceedin8s, USENLK Mach

Synqwsium,USENIX Asscxiuion, November
20, 19W.

[9] Kciti fac~, Edits, “Wh 3 server Writer’s
Gui&~ Open Sojhuam Foundation and
Carnegie Mel&n Uniwsity, March, 1992.

[lO]Keith Locpwe, Editcr, ‘Msch 3 Kemei Intcr-
faccs,”Open Sojhuam Foumhtim and Carnegie
Mellon University,March, 1992.

[1I]Paul Pierce, ‘The NW Opcruing System.”
Concumnt Swrcow!puting, A Technicai
Swnnwy of tk iPSC12 Concu.rmntSuperacom-
puter, Intel Corpomtion, 1988

[12]Opem Sofhwuc Foumhti(xI,OSF/1
Prqmtm?w r’s R~ercnce, Prcnrice HaU, 1991.

[13]Pmsoft Coqmdcm , “E.qmss User’s Gui&,”
PMaSofIc~* 1~”

[14]kial A. Red, Rolmt D. OIsort, et. al.,
“scalable Fert’~e Environments for
Parallel Systems,” Unhrsity of /llinois, 199I

[15]RichArdStallman, Roland Pwch, C/singGDB; A
Guide to the GNU Sou~e-1.awl Debugger. Ed.
4,01, GDB version 4,4, Free Software
Fcamdation, Januaq 1992

——-_——— -

The Paragon Tools Application Monitor

(TAM)

Don Breazeal

Intel Supercomputer Systems Division

donb@ssd.inteLcom

● Intel Supercomputer Systems Division ~

● Tbd8 Appllauon Monitor(TAM)

“ Pamgm Tbo180umiuw

Paragon System Architecture

● Up to 1000 nodes connected by high speed
message routing H/W

● Each node has 2 i860/XP CPUS (75 MFIops double
precision) and 16-64MB RAM

. NC)Remote Memory Access (NORMA)

c Some nodes attached to 10 devices

s RPM - global clock and H/W performance counters

b tntel Supercomputefsystems Division ~

—-—

Interconnection Architecture

● Nodes connected in 2-D mesh

● “Worm Hole” routing (vs. “store and forward”)

● 200 MB/s full duplex, 40 nsec latency per hop

I

Intel Supefcomptw Systems Division ~

● Mach 3 microkernel, emulation library, and single
server on every node.

services of OSF/1 server used
e.g., file SWViCeSm

● Unused portions of server are paged out.

Paragon OS Architecture

OSFII

● Not all on each node;

m
(3sewer

I pkernel I

1 m 1

5

Distributed Unix

● Process management fully distributed across
OSFII servers
e process [m

* signals

● waito

● ptraceo!

● Parallel File System - files striped across l/O nodes

w Intel Supercomputer Systems Division ~

~-=-/—@w%I%%?@%l%l ‘9211&9%2 6

Multicornputer Extensions

● Multicornputer programming model
● Typed message passing ala W/2

e Facilities for loading and controlling parallel applications

“ Node allocation and partitioning

● “Service partition’g load balancing and process
migration provides scalable “front end”

● Gang scheduling in the “compute partition”

Intel Supercomputer Systems Division ~

D -=—1~—wr%l ‘w/10+m 7

Debugging a Parallel Program: Capturing Inter-Processor

Communication in an iWarp Torus

Thomas Gross and Susan Hinrichs
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstmst

TO un~md or imp’ove h Cx@WUOf!&hSVIOf Of a pI’O@UIllOna -kl ~yUCJIL1[1SOftCn
necessary to consiti rhc inwzwxicm bc4wn the procawa in the systcm. Since cunmunication is
immt fw all parallel program, obtairhg informatia shut & inter-~ wmmunication of
the program is an important aspect of ~tanding prognm execution. If the ~’s ~isthe

w~ of the paraltel program, then the w must be able to captm the dynamic aspmta of inter-
procossorcommunication. Unfortunately,Liming informadonaboutin~-pnxewor communication
is often not easy to obtain. Building a s@al-~ hardware p’fonnance monitor is too costly
in most scenarios, and the usc of VLSI to integrate communication and computation on a single
component often providesonly a fcw externally visible mcasurcm?entpoints, A software monitor
on dw oh hand is often tm slow to allow exeution of the monitored program without serious
perturbation,

Although the intcgraLion of communiuuion and computatkm cmgincson a single component
provides some chatlcngcs to monitoring, it also opens the opportunity to progmrn the processorsin
a parallel system so thattheycan monitor communication traflic. That is, during monitoring sornc
pruccssorsexum.c Lheuserprogmm (to bc monitored) while other processorsexccutc a special monitor
program (which captures informalionon the in~-~sor communication). With~uatc software
mls, this information then w IM analyzed to fxcscmta picture of the communication bctwm the usa
processes. This paper discusses lhc bctib and difficultks of an implcmcntion based on this idea
for the iWarp system. We conclude that a programmable pmxssor that intcgtatc.scommurucation and
computauon is also suited to serve as a hardware momtor al a f=tion of the cost of a special-purpose
dcslgn,

1 Introduction

[Mugging a pro~rarn on a parallel syslem is difficult when the objective is m get a crrrnxn program.

(;cttlrl~ ti program m run fast (while maintaining its corrwtness) is even harder and mquircs a wide rarlKc

01” IIlti]mlati{m uhouf the cxeculiorl behavior of’ the program. A pcrforrnmcc debugger must pmvidc

III limnwi[m orI how uomputat ion cycles, memory Frandwidt!l, communication handwidlh, or mhcr syswm
.-- ---- ...-.-— ..—..-

$IIppIItIcdm prr by the I)elenscAdvmced ResearchProyxtJAgcmy, hrlmrnationSciencecrrdTechnology(jttlcr, undert.hc
II(IC “Rcwmchon Parallel(“t~mpuung,”ARPA order No, 71W. Work tumwhedin cmmmxmn wIrtr thu resem-chIS provldctl
umlcr prrnw twrtraci M1>AIJ72 W) (“ 0015issued hy tlARPAKM() m (“mmgle Mellon UnivcmNy.
I’IIL.VICWImwltmnclu~itmstwnmmrd in 11111document sre rlrriseOf rhe muhon ●nd should nw he irrrerpreredu reprc~rnlmg Ihr
,,1Ii{ ,HI lNIIICl~S,clillrr exi]rexsrd III impliml. II(the 1),S, (kwcrnrnenl,

I

I 1,, ,

rwources are spent by the program. With this knowledge the programmer knows where to concentrate

her efforts in n.uting the program to remove bottlenecks.

Obtaining, analyzing, and presenting performance information f~. a sequential system is sometimes
difficult and still an active ma of rcwearch[SK90]. For parallel systems, the sifuation is even worse; in

addition to the information that must IM obtained for eaeh processor, we must undemtand the interaction
between the pmeessors in the pamllcl system.

We have been exploring issues in performance debugging while wotk.ing on the iWq system, a

private-memory, MIMI), parallel computer[BC~88J. A single-node gdb-like debugger exists to debug

the code on individual nodes of the iWarp, but this provides only a pigeon-hole view of the execution
of a progtam. The single-node debugger mats inter-processor communication by a node the same way
input/output is treated by a uniptucessor debuggcn after a message has been sent, it is invisible and

cannot be tmcked until it is rweived by another node (when tbe single-node debugger for that node is
able to inspect the message). To understand or impmve the execution behavior of a program on a parallel

sys~em, it is ohen necessay to monitor this inter-processor communication. If we can obseme how

messages travel through the parallel system, we can combine this information with the information about
[he execution on each node to provide the user with a global picture of system performance. Consider

the example where processor A must receive messages from Imtb proeeaao m B and C txfom it can begin

some computation. Suppose the message from C will anive long after the message from B has anived. If

the compiled program on processor A hascmmnittcdto tcceivc C’smessagefirst,processor A will block,
waiting to receive the message from C, and processor B will block, waiting for its message to be received.
A single-node debugger is of little help in idcnti~ing such situations, since it cannot captute the reason for

the delay in ptucessor B by solely inspting this processor’s state. Furthermore, ●single-node debugger

may perturb the execution of the inspected prucess. Some pertinentcommunication issues to measme am

frequency of messages, the m.urdxr of words transmitted, and specific paftems in the messages.

Them exist two approaches to obtaining such communication information: using a hardwatt monitor

or software instrumentation, Them is a well-known cost versus accuracy tradeoff Ixtween these two

options. Using additional hadwam to monitor performance is more accurate, &ause the monitoring

does not s[cal any resources from the moni~orcd program. However, using additional hardware takes much

mm effort. The monitoring hardwaremust tx Gcsignedand built, and since it is special purpose, it cannot

be used when the pmgram.mer is not intetwted in monitoring, For this reason, the buyers of systems an

Jsually unwilling to pay for additional monitoring hardware (and the component designem arc unwilimg

m sacrifice significant mea or design effort to provide it). Furthemtore, as advances in VLSI UIIOW

iI lighter coupling of communication snd computation, the monitoring of inter-process communication

hcuomcs more and mom dillicuh, On an iWup system, a hardwatc monitor that attempts [o observe

the cx)mmunicii~ion &twecn two adjaccn[nodes must to understand an inter-processor bus protocol [hii~

Includcs resouttc allocation, routing, and flow-control. (he two or more processor nodes are imcgrtitcd

OM(J [he sanic component. obtahing access to any communication between [WO such nodes will be next

[0 inlpossildc,

$hliware instmmcntation costs less. becuuse only lhe software is changed. The prugrarn m thc

sys[cnl w~flwtirc can be irm[rumcnted [o gather ini’orrrmtion, ‘This option is more flexible lhan an iipp~i~~h

huscd (m a hardware monitor, bu[the additional soflwam steals cycles and hardware resoutics [mm Ihc

~wigind pmgr-un, so the cxccutiwr of the monimmd program is perturbed, As communiciuion ov~tiicid

ill p;mdlcl sywcms ha% decreased over the yearx enabling Iincr-grained communictition, thi.i so!twam

morittoring” intrusion becomes Icss ucceptablc. For example, an iWa~ node can send and reccivc tour

1?-bi[w(mls every l(x) m (the [irnc it take.s m perform ci[he: one +ingle-precision floating Poilll liti~m(w

multiplication or two integer operations), so “bracketing” each communication opetiion with monitoring

code may slow down a program on the iWarp by up to a factor of 40.

However, a parallel system like iWarp offem a hybrid solution. E~h iWarp processor contains a
computation and communication engine, which WE tightly coupled, providing the computation engine
with a detailed view of the mmatunicacion system, At the same time, the computation engine cao be

programmed like a general-purpose pnxcssor, providing the opportunity to use such ii processor as a

monitor processor. The absence of a global memory makes afl communication explicit at the hardware
level, so if we monitor the communication between processors, we can obtain a complete picture of the
communication in the system.

For the iWarp array, we have created a hybrid perfomtance monitoring system that has many of the

benefits of hardware monitoring while incuning costs close to those associated with software instrument-
ation. Section 2 gives some background about tbe monitored parallel system. In Section 3 we describe
this idea for performance monitoring on iWarp in detail- In Section 4 we evaluate the current implement-

ation of this perfonrtance monitotig system. Section 5 describes tools 10 display the inter-processor

information captured by the monitor and gives an example of its use.

2 Background

h this section, we describe some key aspxts of the parallel system.

2.1 Communication

We distinguish between twocommunication styles: memory communication and systolic communication[BCC+ 90].

IrI memory communication, all communication between two processom isdirected through the local mem-

ory of the sender and mceivcr processors. The sender assembles a message in memory and then passes

i[[o the commumcation system, which mnsfets the message to the memory of the receiver processor.

Message passing is a well-known parwligm that is basal on memory communication.

For systolic communication, the processor is directly connected to the communication subsystem, On

the sender processor, the words of a message am passed to the communication system as they am generated

wi[hout any buffering in memory, Similarly, the receiving processor consumes the words directly from

[hc communication system without first buffering them in memory.

W’ilh memw-y communication, the unit of transfer fmm the sender processor 10the receiver is a block

of dwiI; ciich block contains a number of words. Memory communication is easier to monitor than
systolic communication. If a sender pmgnun USM memory communication, the data of a message are first

wscmblcd in memo~, dwn the communication system is invoked to transfer the data. The entty point into

[hc con,municwion system is well-defined, and the communication system can word information Ii:c

[hc starting time of the message tmnsfer. the message size, and (upon completion) the transfer bandwidt h.

Any ovcrttead iwsociated with such bookkeeping operstion is paid for only once per message. HOWCVCI,

r-mxmfing intormtit ion at lhe start and end of iI message ~ransfcr is not suffkicnt if the progrzrnmcr needs

iuli)muulon uhou[the tra.nsfcrof the individual words O(d message, e.g., if data are trartsmittcd in bursts.

Wi[h svstollc cmnmunicution, the data of a mcssiigc we produced (m consumed) on Lhefly. TM is,

dwu MC wmt as thcv a-m prtxluccd by a ccmnputution unit (e.g., the floating point mhicr). Since Ihc datit tire

grm.ratc(l hv pn~css(w ou the Ily, the processor cannot hc used to nxwrd any informiition like the time ~hc

,,1
,,

item was sent. If we wanted to use the processor 10 capture such information, then the processor would

have to stop generating data. So if we want to obtain timing information about systolic communication

or if we need infommtion for memory communication at a finer grain than complete messages, we cannot

use the sending or receiving processor to monito: communication without serious pmurbation of the

progmrn execution.

2.2 The iWarp system

The design of the iWiq component has been descritxd eariie~BC~88, BC~90]; here we summarize

only those aspects that am essential for the understanding of this paper.

The iWarp processor supports multiple fogicul chunnek ktween adjacent nodes, so multiple high

speed connections can be setup using the same physical busses. On each node there is a finite number of

queues, which buffer the data sent over the logical channels. A logicalchannel is assigned a queue on the

source node and another queue on the destination node. These logical channels can be chained together

to form a parhway by using the destination queue of one logical CF, .mel M the source queue of another

logical channel. The communication hardware takes care of fonvarding data through rhe intermediate

nodes of chahd logical channels, so the @ways provide direct, hign-speed connections Ixtween nodes
that am not physically djacent. Pathways can be used to reaetve reaoums for memory communication
(message passing), or to set up connections for systolic communication.

\n iWa,rpsystem is built out of iWarp processom and is arranged in an n x m torus. Each iWarp

system is connemd to a workstation that sewer as its front end, e.g., the output of a print f statement

executing on a node appears on the file system of the front end. To date (August 1992), a number of

systems have been built ranging in size from 4 to 256 nodes.

2.3 User model

The user seldom programs the iWwp system at the level of logical channels. instead, she either uses a

parallel program generator or describes the computation as a set of processes with connections between

~hese processes. A parallel program generator like Assign [0’H91] or Apply [HWW89, BG91] takes a

high-level description of a computation (that is. without any explicit statements for communication or

data placcmcnt) and translates that description into a program for each node of the iWarp system with

ctmncctions between nodes as appropriate. It’ the programmer describes the computation as a se; of

pn~ccsscs, a c:wl maps this set of prcxes.ses onto the mrget iWarp torus, provided the num~r of pmccs.ses

IS ICSSlhwl or equal the number of nodes in the target iW~ torus. Afler [he processes are mapped onto

[hc iWarp mrus (either by the parallel program generator or the tool mentioned above), another mol SCIS

up logi~’id channels to implement a connection between any IWO nodes if the programs mapped onm these

m)(lcf arc conncclcd. The number of connections that can paM lhrough a node is limited by Ihc numhcr

1~1lo~l~ill uhanncls, which is taken into accoum when mapping the proccsscs onto nodes. Figure 1 shows

[tic IIlapping of ii sel of proccsscs and connections onto an iWarptorus.

J ,Nlonitoring inter-process communication

Ii) ECI ;I hurdle on inler-pmccss communication in u parullcl sys[cIII, i[is nc:ewu-y to S[;III will] [1119

In[c Ilut)ccssol (’orllillullicd lion” For ~~i~rll[)lc, il” wc WMI [1)OIWCIVCIII(*floW of”(l~tii I“rortl Ntdr ,! I()

1

IwEh
Figutc 1: An example of mapping pmcasc.s onto the iWarp may and mapping comcctions onto

]O@Cd channels.

Node 3 in Figure 1, we must conaidcr Node 4 as well, since the data travel through this node. Since
the cutmm runtime systcm allows only a single user proccaa pcr node (and this is not likely to change

in the future), infonntion about the flow of data bctwccn pmmssora can bc directly mapped onto the

inter-process communication of the user progmm.

If we know how the length of a logical chard queh%changca overtime, we have an idea of the run time

communication patterns. For inatancc, while a queue is empty, we know either there is no communication

going on over this logical channel or the rcc-civing node is waiting for data from the sending node. While

the queue is fuli, the sending node is acndmg faster than the rccciving node is rccciving. By watching
how queues fill and empty dting the course of a program’s execution, tie programmer cm visualize the

communication flow of her program md identify boulenccksor depcndcnccs betweenmessages. Ilc

actual number of worda in a queue is Icss important at fhis level of analysis thm thestate (full, empty,

partiallyfull) of the queue. [f the queue is Ml, the sender cannot pmcecd. If the queue is empty, tic

receiver cannot procccd; olherwkc both cm go on.

To get an xcurate picture from monitoring inter-pnxew. communication we must try to maximize the

accuracy of the gtiemd data and minimize the perturbation causal by monitoring. Section I explained

how pure hardware or pure software monitoring solutions am not prtxtical for the iWarp systcm. A pure

hardware solution could not gather sufllcicntly detailed data about the communication, and instrumenting

al I communication functions could Md too much perturbation for programs with fine-graincd systolic

communication rquircments. However, we notice that not all nodes of an iWarp may arc used all Ihc

lime, and these unused nodes have the same capabilities as the nodes used to cxccutc t.hc user program,

WI wc CLI usc these nodes to gather information about tie execution of the user program. I%at is, some

IIodcs arc program nodes (executing the user program), and othcm arc monitor nodes, capturing Ihc

in[crpfuccssor communication btwccn program nodes. Since k monitoring pmgrarns arc running on a

di flcnml set of nodes, lhcy arc not stealing cycles fmm the user program. one d’ [hc advantages of using

wldluonal ha.rdwarc to monitor pctformancc. Since the nodes arc pmgrammablc, no extra hardware needs

10 k dcwgncd, and when monltnnng is not desired, the monitoring nodes can run user programs.

This hybrid approach of using some of the nodes in the parallel systcm for user program cxccu[ion

;md Ihc rest for monitoring is mtcgmtcd into the standaid communkation tool chain IHin9 I], Whcncvcr

Ihc USC?wlcct:; the morlitoring option, [he tool chain spreads out the connection definitions md mxlc

mupplng~, so munimring nodes can bc in encd bctwccrt each adjucnt par of user program nodes, ‘Ilc

pti[hwavs klwccn any IWO nodes arc Icngthencd m paw through the monitoring mxlcs. SW Figure 2

fi)r IWII cxiunpks of Ibis lransfomnation.” The m(itnring tmdcs (shown dashed) am Mdcd wi[h Ihc

m(mlloring program,

P-9 r-l F-T F-* P-* P-*
,,, ,,. ,,, .1L-J b.~ L.4 b.; b-d L.j

v-q r-. F-, ● -. F-. p-. F-.
,, ,91, ,,*,L.; b.; L., L-J b.i L.* L.J

,.. *
,,
L.a

r-.
,.
L.*

P--
,,
b. J

FIgurE 2: Netwoti layout of original progmn is a tlM 1*. ‘ho different netwo~ Iayouta of the

munitomd progmmm totheright.Thecunm monitoringtoolchainuwx the center Iayc w

During the execution of the user pmgmtn, the monitoring nods gather data about the size of the
logical channel queuesof the pathwaya thst P tluuugh tbwt. At the end of exe?ution, this information
isdownloded toagcneral-~worksmdat that is~ to tlmiWarptorus. ‘f’hemthe pmgrammcr
can uac other tools to pmccaa, analyze and view the quew length daU

3.1 (htharlng qw state data

lb @er UUrate queue length data while ding Iitcle pertwbdon, the monitoring program takes

dmntage of several fcaturcaof the iWarp amhktumc M iWafp node conalats of a cmnputation agent

and a communication agent that ~xiat on the came chip, Thcac agem can execute aaynchronoualy, or

the computation agent can control the communication agent. ‘fltc monitothg program runs the two agcnta

asynchronously, ao dma pawing on pathwsys through the ntoniting nodec811condnucwithoutaoftwam

imcrfercnce. Since LIW computation and communication -U cxht on the stnte chip, the computation

agent can sample the state of the communication agent with little overhcd. ‘lb detefmine the length of

all network queuca, the computation agentmust mMI 4 controlapaceregisters,which takca 4 cyclca.

The monitrwing program aJaotakea advani~ of the hatdwam suppofi for configuring multiple logical

channels Imwccn nodes. “k progmm’s connectionsarc mapped onto logical channels, and different

uonncc[ions usc difhcnt logical channels with distinct physical queues, so the monitor program can

CUSIIy di ffcmmiatc bcuveen differcni progrsm connections, if all the communication UMC was collcclcd

ill u $inglc queue, this division would M diflhm to dixccm witiout additional prolocol infommtion and

k)okkccpmg,

‘I-hc monitoring progmm slorca timutunps with [he queue Icngth d-la, so the programmer can scc

how ncIwonk queue length changes overtime, his ●lso intcrcwing 10compare how queue len~lhs chungc

over I imc hc[wccn diflcrcnt ndcw lb make Ibis comparison xcumtely, there mum h some sense of

giohld system iimc, Ewh iWarp pmcewuw contdns Iwn clock Iimcrn (wilh a mwlution of II clocks. i,c.

400 IIS on a 20 Mt4z sywcm), and OIIL nf!hc,se [imcm is IC,xcIVcd f{w [he uxcr prugmrn, ()ur implcmcnlti[ion

SCISthe user Iimers of d II(MICSII) a common global Iimc in Iwo slcps using a Synctlnmizulioll pwkq!r

dcvchqwd hxallyl FGOS92],

3.2 Processing queue state data

The monitoring program stores the gathered data in a buffer. At the end of extiution or when the buffer

fills up, the monitoring program sends this data to fhe host processor. If the data is transferred tier the
end of the monitomd progmm’s cxocution, the time attd bandwidth spent sending the data is not critical.

However, if tie buffered data must be sent dt,uing execution of the user program, this transfer steals

bandwidth fmm the monitored program, and the queue length cannot be monitored by this node while it

is sending the data. This pmblun could be avoided by hsltingexecution of all nodes in tic iWarptorus.
However, since the monitoring nodes prc-p~ the samples on the fly (see below), there has ken no
need so far to download rhe monitoring data hcfom the end of the user program’s execution.

Forms of data compression can be used to rcducc the amount of sampled data stored on the monitoring

node. We have obacrvcd that network queues arc often in a stdy state, so the queue length from the last

sample is often Lhc same as the queue length of the current sample. Data from llmsctwo samples can be
merged into one cnuy. This sort of data compression should be p’formed some time &fom the data is
analyzed by tic programmer to merge large blocks of rcdundmt data. Other standad data compression

techniques can also be used to reduce the amount of sptux needed to store individual entries, These data

compression techniques can be performed during the sampling loop to reduce the amount of space needed

in the monitoring buffers and so increase the amount of time &fore the monitor data buffer is filled.

However, adding this additional compuuuion to the critical sampling loop may reduce the queue lengh

sampling rate.

Tb determine the cost of the data compression, wc created two versions of the time critical sampling

Imp in assembly code. TIM first version did no data compression and stored all samples in the monitoring

buffer. The second version compared the cummt sample with the last stored sample, and only stored the

currcn: sample if it was different. On a sc~ of example progmms, the finit version on average mok 31

cycles per iteration, The ~ond version on average took 30 cycles per itemtion. h may .sccrnsurprising

thw dw loop speeds arc so similar, even though the firstloop is simpler and performs fewer conditionals.

However. often the queue Iengh does not change btwcen between samples, so the second loop performs

fewer stores, and the comparisons arc slightly faster than the stores, We ckidcd to usc the vcmion of [he

loop ~hat performed dma compression in the loop, bccausc l.hc times of the two loops were very close and

the second loop consumes far less buffer space,

4 Evaluation of the current implementation

Wc inlplcmml[cd u prototype version of the monitoring system ctcscrikd in the previous section, This

sc~.tiun (Iiscusscs how CIO.SCwc came to our gods of minirniling perturbation of lhc nmnimrcd pmgriun

A milxirnizing uccuracy of the gathered network dil[~.

4. I iMonltored program perturlmtion

l~n]nl timitlg scverxl IIIWIIIOA pn)grams ii appears that the monitoring cmlc does not significantly otTcuI

IIW ckw-uIIorI Iimc (}I Ihr m(mimrd program, To get a helter idea of how monitoring affects [hc cxccmion

~d’ltlc tmmjtorml program, wc l(~)kcd AUindividual fIICI(MX that might skew the cxccmi(m,

addition of network queues. Each monitoring node adds one queue to the network capable of buffering 8
additional wotds. If a sender and receiver are just barely blocking, Ihe additional buffering may keep the

sending node from blocking.

2500

2000

500

0

I

— Distance: 1 cell

— Distance: 7 cells I

I II 1111 Ill 111111111111111111111 11111111111111
10 110 210 310 410

Message size (words)

Figure 3: Graph of message sin versus message sending time when the sender is faster than the

receiver.

To dcletmine the effect of longer netwodts, we ran and timed several versions of u simple send Iuld

nxwivc pmgmm [hul varied the diwance between the sending node and the rccciving node, For onc set

of these programs, the sender sent messages fawcr Ihan the receiver could mccive [hem. For amhcr set

[)1”programs, the .scndcr and receiver operated al lhc same talc. Sec Figures 3 und 4 !hr gmphs O(the

rc\ul Is, I+OIUthe.scgraphs you cart sec when the sender w,a.. fawer [hart the rrxivcr, [hc dismncc Mwctn

IIIC $cnclirtg and receiving nodes made mote difference, The additional buffer space on the intem)cdiatc

II()(ICS cx)uld sh)re more dnta so the .scndcr [hut wm further IIwuy flnishcc! fu.wer, but the slope of the gmph

IS Ihr SWIIC rcgatdless of the nmle distance. Once [hc queues had initially (illed, Ihc scmlcr sem M the

WIIIC r:ltc regm-dless of Ihe dislance hctween the sender and Ihc nxciver, When [he sender und reccivcr

W(OITworkitlg iit the wtmc speed, [he distance belwecn the nodes made a much smaller dilYcrcnce, Whrn

IIId scmkr and nxcivcr are wmnuniculing al the sm~c speed, the mcssuges is tmt redly takitl~ MIVIUIIUMC

~JfIhc l)ul~cm uddcd by lhc lon~cr ncIwI)rk, In this caw ihc only change tlcpcndcm on [hc network lcIl#Ih

WI)uld k mhjiti(mid tIIIIe it IACS m tmvcl over ~wiuc M many liuks.

“1’IWm)th~ pn)gru.ms ml(kss ()[her m)dcs I() spccil~ [hc tlrt~inuti(m when scndin~ dIIIa (wcr IIcIW(Hk:~,

N,NIW nrr mh!rrsscd hy thr n)w mtd column nu:nhcm of [heir Iol.:uiou in the pnwcsw)r Nrruy, Aftrt Ihr

m
500-

4a)-
~
~

&O-

E
1=

200-

l(x)-

0,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,,,, ,,, ,,, ,,, ,,, ,,, ,,,,,,(
10 110 210 310 410

Message siu (words)

Figure 4: Roundtrip message time when the sender and rcccivcr arc operating at the same speed,

user’s prwgram has been spread out to insat monitoring nodes, the sddrwscs of destination nodes in the

node programs must h adjustcxl. This address transformation is prformcd at mn time by multiplying the

row and column numtrcm of the destination by 2 (or quivalcntly shifling time numbers 1 bit to the Icfih

which mids a small overhead 10 the setup of a ctmncction,

4.2 Sumple data accuracy

“1’IIc lm)nitor prvgram reads the current network queue sizes from 4 cmttrwl space mgislcrm ‘I%c Icrrglh 01’

c;IL’11qwuc is stored in four bi[s, and these him arc striped over Ihc 4 control spncc rcgi~lcrx. Since [hc

qurur lcn~ihs citn change with each cycle, i[is [hc possible for a queue lenglh to chringc while the c(mtn)l

spiIcc rcglsicrs arc being wnplcd. The queue Icngths am c[)nstrainccl to change at most by one with cu~h

(’lurk lick Ior sir)glc wmcl mtmfcm [queue Icngihs cnn change by IWO pcr cuch clock tick (or double word

I Ims!crs), so Ihc pcrccntngc td’ crrorx i~ Iowcr ihan it would hc if [hc queue lengths could change m ~iny
vduc Wr hnve Idw) ohscrvcd that the queue Icnglhs tend not m chun~e conlinunlly wilh cuh ch~k Iithk,

w} Ihc ~rddsof snrnpling during a queue Icngth trunnilion arc low.

()vrr the period Ihc program is rmdirrg the conlrol space rc~ishm, the Icnglh of a quruc m~ty vnry hv

! hw \IIIMle wtml Irmnslrm (“(m!lidcr the four numhcr lran~iti~ms Ihrtt ctrc ulh)wrd tm lhc () 10 II u(mnlrr,

e.g. 8-7-6 -5or4-4 - 5 + 4. There am 203 valid four nurnlxr transitions over the range

of O to 8. The monitor program reads the queue Iengti registers one bit at a time while the mud queue

length goes Ihrough one of these four number transitions. The queue size read is inaccurate if it was nol

one of the queue lengIh values during tic 4 cycles it took to mad the queue length regieslers.

The monitor program reds the queue lengths starting with the most significant bit, so the womt

inaccuracies occur when the top bit changes in transitions such as 8 + 7 + t - ● or 7 - 8 - ● - t.

Downward transitions from 8 will result in numbm greaterthan 8. lle monitor program truncates such

numbers to 8. In this case the queue size is accurate, twcausc 8 one of the queue length values during

the time it took to read the queue length wister. However, tnmshionsthatstart from 7 to H arc bad

because tie two most significant bits read will be O and the resulting value read will be at most 3,atIew
4 offfrom either 8or 7, ‘he next womt inaccuracies occur in transition such as * + 4 - 3 - ● or

* — 3 -4 - ●, because tie Ute middle two bits will be inaccurately set to 1 or to 0, For tmnsitions of

[he form t -4 -3 - t [he resulting number read will be 6 or 7 at least two off. For transitions of the

f(Wrn*-3-4- ● the resulting number will be O or 1 at le=t 2 numbers off.

Without mom accurate information about the distribution of queue length changes, we cannot deter-

mine the sampling cmur introduced by mismading queue lengths, 1 However, M stutcd earlier, for an

understanding of inter-processor communication, the state of the queue is more important than Lhc sctutd

number of words in the queue, so the current sampling technique is adequate. Designers of future system

may want [o chose a differenl design for the status mgistcrs that allows an atomic read of the queue length
regislcrs.

5 [Jsing queue length data

After Ihe monitored program has been executed, the programmer is Ietl with large files O(numbers, To gcl

any useful in fonnution from [his data, the pmgrammcr needs tools to effectively manipulate and displuy

[hc queue size data, Much work htu been done on displaying monimrd data (e.g. ‘I@eslw 1MaIQOl,

BEE [flru901, and others). We huve crcwed two rehuivcly simple programs to uid in the post -mortcm

undcrwimding of the collected data,

“Ilc titwprugrwu xmon is un X window program Ihat examines lhc dnla lilts and disploys Ihc user’s
may WNJinpui Itlglu:d channel queues. h s[cps thrnugh the execution of the monittwed pn)~riuii nnd

{Iiyllu,ys thr queue Icngths ~tteach poinl in the origirwl execution. l:i~urc S shows a scrccn image of xmon

III m~tiwl. III thtil figure, xmon is winking on a program Ihat ran (m a 4 ~ 4 Nrmy of nodes. ‘Ii’tcre tire Iwo

~llv rihu[itm IICI works snuking through the array, and there urr nctw(~rks he[wccn cuch pmr of phy~il:idl~

J(II:UXWInudes. l~igum 6 shows the logical um.ngcrncnt of the nctwnrk~ used in Ihnl urmy prn~rwn. “1’hc

queues in (hc xmon displuy am shaded to rdltxn[heir Icngth, The display mllccIs the WIIICd’ the queues

A Ihc pl~int ill the execution of the origintil program shown hy lhc Iimc bnr al the Imlmnt of’ lhr scrrrn.

l’lIr IIIIW Imr IS Idwlcd frum () II) the end of W original cxeculion und is filled 10 ttw currmly displnvrd

rIviuIIIIIl IIIIIC (I;igure 5 shows the state ofqucum tifter the program hm cxccu[ed (or ‘)4,01W1’YCICN). ‘Ilr

u\r I (WI wcp [() the IICR[or previous slate d’ the IJUCUCN.The user curl Au) run in fmmdlt m(Mk, whrm

inmn :tIIIc}ttIiIf IL’iIlly displti,vs cuch c(msccuflve ~nitc.

program. For example, she CM SC-Cperiods where one .sctof networks is more active than another SCIor
where a set of queues is consistently full. While xmon is helpful in visualizing the global data flow, it

is not so good for pmscnting the fine details of tic communication patterns. xmon only shows chunges

in queue length, so when running in animate mode, the time bar does not move forward smoothly. If the
queue lengths did not change for a long time, me time bar will jump ahead to the time of the next queue
length chsnge. If there arc shori alternations of communication and computation, the short jumps in the

time bar are easy to miss.

o
.--. .—

LJ$l
I H7=fl%-M I

Figure fi: A piclurc of the logical cormcc[ions u.scdin the in the AL matrix muhiply program,

S.1 Nxwnples

1Irrc wc show an example of using xmon and men-graph m evuluatc the moniu-md dafa (mm IWO remix

multiply prugrums, One WIM an AL progrwn which U.SMmemory communication (,w [TsclW] Ibr details),

‘1’hc t~ltwr pfl]~rum uscs syslolic communication und w~q genemlcd by another mapping 1001 [Rih90],

lh)III ~lrogrii[l]s run on a 4 . 4 may of iWarp nodes (using w prcliminwy version of the r-tmimc systcm

ml vrwllm .?.I IJI”IIW ~ compiler), I;igurc ,5 shows Ihc qucr.rc SIMCS t)f IIIC Al. pn)~ri.un displiiyc(l hy

~tmm, Hv tUIIIIIIIg xrn(m !k)r each prt)gram, wc cun distinguish lhc muin phw+csof k Iwngrwns: hhding,

(’(llll~)llllllg, illl’,1 L’l(lSlll# (loWll,

right
1

0 n

150000 155000 16COO0 165000 170000

down
1

0
150000 155000 160000 165000 170000

Figure 7: A graph of dM queue lcmgths a node (1,1) over time during the cxccutim of tic AL

mawix multiply program.

data slower than it is Iming sm. so the dam stays on he queue, III the b half, the program is trying

IO consume data faster than it is being scrn, ,SOdata is quickly - out of the inputqueue,

S.2 The next step

III the prcviousexample, we gmhercd data on inter-pmccs.wmornmunicatbn and saw that there no message

~i~~ hlt~k~ in Ihc c~mmunic~tion system, If wc h~ discovered a blwk~, the display p~g~ w[)uld

htivc idcmilicd the mnic[s) that were involved in :hc communication, lwl if the nodes exchange muhiplc

mcssugcs, !hc user would have m identify which message wu a!kcted. Without data (mm the user

mKh% Ihcre is m) wuy to rclam the queue sh!cs and times directly with the user node Wivily, For !mmc

pn)grimls, [hc inli}mmtion from [he monitoring nodes alone is suflicicnt 10 imdcmtand lhc communication

p:IIIcms, !mI !t)r complica[rd or unfamiliar programs, relating the queue sizes Ixk to insuwxions in Ilx

IIINIC pn)grarn would Itc vmy useful. Spcciiically, wc would Iikc m link queue lengths wilh Ihc execution

id usrr lnslnuxions and with [he user node wale (chhcr ~iivc m spinring), Onc of the chnllcngc~ IhIII

WILIII J nkd must overtmme iN [hal any more Mailed recording of inforrmliml may pcrturh the progrunl

ctrcul I~m wgniiicwNly,

6 (‘onchmiomi

al
(n
3

al
u)
5

1

0

right
I

60000 65000 70000 75000 80000

I , , 1

1

0
60000 65000 70000

left

lld
75000 80000

Time in cycles

Figure8: A graph of the queue lengths on node (1,1) overtime during tJIC exccutkm of the systolic
mawix multiply program.

communication d= not mquim any uJditionaJ hardwuc, and whcr, he programmer is m intcrcstcd in
monitoring, all msourcca in the system am available to execute user programs. ‘Ilw information gathcmd

hy such a moni;orcan bc used to idcntifi CI mmunicwion bottlenecks, and building a visualization system

is not di~icull,

FuIurc d~signem of integrated components that are to serve M Imilding blocks for parallel systems

muy wam [o consider this usage ofs processor during du &sign phase. Although wc did not encounter

tiny insurmountable problem in implementing the monitor, them arc several rough cdgm (like the need to

raid Ihc q~cuc Icn@ registers .scqucntially),

“llr CIOSCcoupling bctwccn Ihc communication agcm and tie computation agent of the iWarp com-

pmcn[is crucial for [he su~ccssful opcmtion of the monitoring program, h isnm clear if other sy:ucms

(whmc c.[~llinllllliculil)n and computation am not imegmted as closely as in iWarp) carI build a similar I(x)I

m cnsi Iv. }Iowcvcr. the udvamger of lightl y in~cgramd communication and computation m rmwgnizcd
I)Y ,)[llcr purallc[~y~lem~, Ml fulurc syslenl~may p~vi~e[hcfnundaiion Ior similar hybrid rnonimring.

IN(X“’ HHI S Ih)ktir, R. (’ohn, (i. (“ox, S. (IIC;ISOII, T, (;ross, H.T, Kun#, M. I.am, H. MOOR, (.. Pcmwm,

J. Piepcr, 1., Rimkin, P.S. Tscng, J. !lumm, J. [lrhan, and J. Wchh, iWurp:An Inlc#mtcd Solmi{m

Ii) I Iigh -Speed I%ulICI(.umputing. III Pro(vrding,r of Ihr ,Supcnwmpuling (“@rrrnrr, llil~(’!+

! u) I.W, I’)xX.

!

[BC@Xl] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine, B. Moore, t. Pe-
terson, J. Sussman, J. Sutton. J. U-ski, and J. Webb. Supporting Systolic and Memo~

Communication in iWarp, CMU-CS-90- 197. Technical repmt, Carnegie Mellon University,
School of Compiler Science, 1990. Revision of a paper that appeared in the 17th Annual I.ntl.

Symposium on Computer Architecture, Seattle, 1990, pp. 70-81.

[BG91] B. Baxter and B. Gmer. Apply on iW~. In Proceedings of the 5th Distributed Memory

Computer Con&ence, 1991,

[Bm90] B, Bruegge, BEE: a Basis for Distribud Event Environments: Reference Manual, CMU-

CS-90- 180. Technical report, Carnegie Mellon Urdvcmity, School of Computer Science,
1990.

[FG0S921 A. Feldmann, T. Gross, D, O’Hallaron, and T. Strickcr, Subset Barrier Synchronization

on a Private Memory Parallel System. In Pmt. Symposium on Parallel Algorithm and
Archilecrun!s, San Diego, June 1992. ACM.

[Hin91] S. Hinrichs. Programmed Cowvnuncation Service Tool Chain User’s Guide, 1991.

[HWW89] L. G. C. Hamey, J. A. Webb, and I. C. Wu. At Architecture Independent Programming

[Ma190]

[0’H911

[Rib901

[SK901

ITscW]

Language for Low-Level kision. Compuer Viiion, Graphics, and Image Processing, 48:2*

264, 1989.

A, Maloney, Performance Obsewability. PhD thesis, University of Illinois, Urbana-

Champaign, 1990,

D. O’Hallaron. The Assign PamJlel Program Generator. In Proceedings of the jth Distributed
Memory Computer Cqference, 1991,

H. Ribas. Automatic Generation of Systolic Programfmm Nested Loops, PhD thesis, Carnegie

Mellon Univetsily, 1990.

M, Simmons and R. Koskela, edi[om. Performance Instrumentation and Visualization, ACM
Press, Ncw York. 1990.

P, S, Tseng. A Parullehzing Co~iler for Distributed Mewwy Purallel Compulers, PhD
lhcsis, Ctimcgic Mellon University, May IW9,

1’,!

Debugging a Parallel Program:
Capturing Inter-Processor Communication in

an iWq Torus

Thomas Gross
Susan Hinrichs

Carnegie Mellon
School of Computer Science

October 9, 1992

‘ ‘1’1

Overview of talk

●

●

●

●

Introduction

Target machine

Hybrid monitoring approach

- Implementation

- Analysis tools

- Evaluation

Summary

School of Computer Scicncc

Introduction

Performance debugging hard for single processor and
even harder for multiprocessor

Need to gather execution information for complete
system view

f \ f \ r 3
A: B: c:

long_compo recolve(A) send(B)
send(B) receive(c)

\ J \ J \ J

Message ti.wing important to understand performance

fgp

.,

‘< egie
Ifh

Target machine

iWarp, an may of private memory cells comected in a
2 D torus by 40 Mbyte/see busses

...

6

‘\
qcgle

t~A -
.,.

[64 CM system: 1.2 GFLOPS (S.~>
I

iWarp cell

Each cell is a tightiy integrated pair of communication
and computation agents. The agents canoperate
synchronously or asynchronously.

Logical channels

Hardware support for a finite xmrnber of logical
chunnefs. Logical channelsenable multiplehigh speed
connectionsover the same physicalchannel.

Each comection WCSlogical channelbuffersat the
source and destinationcells. Logical channelscan be
chainedtogetherto formpathways,direct connections
between distant “neighbors”.

6

\

A Logical Channell Connects Two Neighbor Cells

Cell O Cell 1

.

n

I
●

n : n
19: ‘TilTTITl-““ I

■ Communicaticm Agcnt~

-t “[’’:”c1lu F
rn Y

Uu

1: ‘~l I

I
●
●

c1
●

il
19: ‘~[I

Ceil 2

1
-.

●
m

c1

●

rl

19: ‘~k ““’ I

>... . . .-=..--.. >=- * .-J ie .=

Program communication

Cell programs communicate by sending messages over
pathways.

Programming tools map processes to processors and
communication networks to pathways.

c12

p----#-l

7

El-j+)/
/“”

\ .. r

Monitoring implementation extremes

● Monitoring hardware

Very accurate

Steals no resources from monitored program

Expensive: requires new, special purpose
hardware

● I%Ofilkg sofhwre

- Inexpensive: requires no new hardware

- Less accurate

Hybrid monitoring approach

Communication connections through intermediate
cells have logical channels assigned on those cells.

r~ r~ I 1

Intermediate cell can read status
length of logical ch,annel.

L—d

registers to determine

Amount of data in the logical channel reflects the
communication pattern.

. empty

o not empty / not full

. full

Implementation outline

● Compile user program with monitoring flag

. Gather data on separate cells during execution

. Dump data to host system after execution

. post-mortem analysis of data on host system

10

Communication networks

,. ,- .-.--,# ,
: ,

,
‘..J ‘.. .-. .J

:, ::: 9!:::1¤ :::::1¤ L:::■,....... #...---, ,...-..,-.,, *o ,
‘..J I..J ‘..J L.. . ..J

: : :; ● !:::::.! ■ (::1¤‘::.2¤

,.- ...-., ,. ...--,
I
,

,

.J ‘.4&,....... .-...... ,.......t : ,......J1

. a :...’-:■ i.:?:u :....;❑

Monitoring cell

while (executing) .

log channel lengthso—

Analyzing profile data

Two simple programs to post-mortem analyze the
monitored data.

xmon - replays the logical channel lengths

men-graph - statically graphs queue lengths on a
single cell

E Aegle
M

Xmon

1<

Men-graph

al
ma 1

o

me~le

n

150000 155000 160000 165000 170000

down

1

150000 155000 160000 165000 170000

right

60000

i

0

65000 70000 75000 dOOO(l

f,!loil(l 65000
T Lme

left

LL 1
75000 80000

in cycles

Hybrid monitoring benefits

● No specialized hardware

. Monitoring programs use separate resources from
user program

● The user makes no changes to the code

Evaluation

Possible sources of skew

●

●

●

Doubling communication routes

Changing destination cell address

Accurately reading logical channel

lK

length registers

E=l

.7IOMegle
n

.~
io’”-”

Messagesize (wends)

m)
Ed

5m -

4m-
~

$m:
w

B
i=

2(K)-

lNl-

“●-
0,, ,,, ,,, ,,, ,,, ,,, ,,, ,,, ,,,,, ,,, ,,, ,,, ,,, ,,, ,,,,,,f

10 110 “ 210 310 410
Message sim (words)

Summary

Tightly integratedcommunicationand computation
enableseffective communicationmonitoring

Hybrid approach provides reasonable cost / accuracy
tradeoff

Another usage model to consider in the design of such
multiprocessor systems.

a Ihgk

n
Q.,l,f.,.l ..#’f*--_,- .:

The Application of Code Instrumentation Technology
in the Los AlamosDebugger

Fast Conditional Software Watchpoin@
Integrated Performance and Coverage Analysis

kff’rey S. Browm Richard Klaumnn
~ AlastIos National IAoratory

Jxyb@lanl.gov, rmk@lanLgov

Introduction

This papr will discuss applications of code instntmentation tdutology in the Los Alamos

Debugger (LDB), By code instrumentation, wc mean debugger modifications of the traced
process to monitor execution in order to ~quirc information about the ptwess while it is running.

The objective is to imp!emwtt debugger functionality in a way that enhances usability while

remaining nun-intrusive, TIIis paper will discuss the application of cods instrumentation in the

implementation of fast conditional softwttrc watchpoints, and integrated Prforrnance and

coverage analysis. We condudc by suggesting future application areas.

Watchpolnta

Watchpoint is a debugger feature that causes a traced process to stop when a data cicmcnt (or
range) is modified possibly sub@ct to a user-spccifred cond!tion cm the modified data. in the

absence of hardware suppcm (which is the case on the Cmy Y NW) the traditional implementation

is to stop the wed process frequently to check the condition in the debugger while the prmess

rcmams stoppd. While this approach will certainly work, impact on pcrforrnancc of the traced

prcwess is such that the user runs out of paticnrc long before the watchpoint condition is satisfied.

With hardware support, the traced process stops only when the data clement (or range) is written

to. This is much mom efficient !han the frequent stopping of the ~rnced ~roccss, but domr’t help

when the user specifies a conditional watchpoint. The traced daht element (or range) can

potcnlicdly be written [o millions of times before dm condition of Interest IS satlslled again

ctiusirrg a severe impact on ~rformance of the traced pruccss.

I;nst conditional so!lwtm watchpoinls are implemcnmd in lJIB by mmiifying the trmcd process

M check the watch condition on-the-tly. This implcmcn(ation allows the ‘Jser to spmfy i!

cumplcx condition on the datn clement being wmchcd while minimizing the impact on

pcrfmmame of the tmccd prucss. Detection of the watch condition requires thnt the user mn lhc

code twice, The first run ch~ks the condition tit every subroutine entry nnd exit (watch uII),

()nce the offending sulwoutinc is Iwatcd, the second run ‘wcks for the condilion M every

Iinchhcl (wuf(+r in). The gr,wmlwity of Ihc second pnss ii iI [unction of compiler optirniz,nrion

kvel The two-puss approach is ncccssaty duc to the time mu! cudc space rrquircd to ins(:tirrlcnt

IIIC ernitc pr~)~mrn nt the Iincilnhcl Icvcl. l-hry/cxu Icvcl code instnrmcnlutitm is !:1s1 @

rrquims lIIIk ctxle space In Ihc tracd process {O irnplcmrnt.

User Interfizce

Watch All

Here’s an example cf the sort of problem watchpoints arc good at solving:

CO~ON X(2,50), A(1OO), ??(2,50), B(1OO)

. . .

READ(2) A

100 COl?TINUX

● ☛✎

CALL SSWk~’(lOO, X,2, Y,2)

. . .

C = A(l)

Suppose you’re debugging this code and discover that, a! the pwnt of the assignment to C, A(1)
has been trashed. You rerun the code from the beginning, stopping after the READ, and verify
that the value of A(1) is correct at that time, So somewhere between the read and the assignment,

A(1) is being corrupted.

Note that SSWAP must be the source of the data corruption. SSWAP is a Cray LIBSCI routine

that swaps the contents of two vectors. In this case it appears that the programmer wished to

swap the first row of X with the first row of Y, however, the first argument to SSWAP should bc

the number of elements to swap, not the size of the array, so we’ ve inadvertently swapped the odd

elements of A with the odd elements of B, as well swapping portions of X and Y.

In this context the problem clearly needs no tools to be solved. In practice t.hcsc lines of Form-an

arc usually in separate routines, and the ellipsis arc replace by thousands of lines of code, This is
not a trivial bug to detect. Most programmctx will scatter print statements randomly about their

code and home in on the bug after a day or two,

Here’s how the experienced LDB user tackles this problem: (We’ II usc “Lf)B>” as the LDB

prompt; in real life the prompt would be the name of the currently ac(ivc subroutine in the code

being debugged.)

Lm> run to $100

LDB> watch all for chang@(A(l))

Ydm> run

l-’lrs~ wc run to a point just eftcr (he read of A, where wc know the contents of dw array arc

ct)rrcut. Next we te~l [.DB 10 instrument our code by patching in instructions at ench mbrou[inc

rntry ii[]d cxIt [o detect a change in A(I), Lastly we continue exccutmn of the cfuie :uld w,~it ftw a

diagnostic. In this Ci]Se I.DB will fell us that a chnngc tn A(I) WM dWXVC~ ~Jll the exit fr~~m

SSWAP(). QED.

‘[’he all clause IS u new varianl 10 IJlil’n wtitch c.ommnnd; it ‘~plil(’CS wu(ch from, whwh

2

attempted to patch all brmkpointable Iincs and labels in a potentially huge call tree. The new
watch all is fast, but can only resolve to the subroutine level. In this case that was all we needed;

checking the parameters to SSWAP revealed the problem. In other cases we may need to rerun

the problem with a watchpoint set in the routine indicated by watch all

Watch In

Here’s a harder bug. Say you’ve just integrated code from your development team into a rather

large application, and now a part of the code that nobody touched is broken, You put the

application under LDB, run it, and get the following:

Error exits are caused by executing zero instructions, which we verify by listing the CAL

surrounding the error:

LDB> tli rog(pc) -1 for 7

0t9000365vb: 025 2 02 B02 A2

00000365Pc: 025 6 01 Bol A6

00000365pd: 024 0 01 AO Bol

00000366 pa: 000 000 RRR
00000366pb: 000 000 ERR
OOOO0366PC: 000 000 ERR
00000366pd: 000 000 ERR

This looks like a classic case of code being overwritten by data. TO solve this, we’ll set a

watchpoint to stop as soon as we detect that this code has been clobbered:

LDB> watch ●ll for mam(366b) wt. O

LDB> r.run

Frmn this wc get the following diagnostic:

wa~chpuint ccmdition met in ~ukmoutina ! BURN

(datactod at ●ntry to XLATll)

[n this case BURN is a very large subroutine and XLATE is called somewhere in the middle of it
.. the large grimulnnty of [he watch all command still leaves us with n difficult problcm.

Eorturmtclv wntch cun hone the problem down further, given that wc know the routtnc imd

:lpprl)XllTlil(C Iocwmn t,ct’s try the following:

LDB> watch ~xI BURN from 755L to 834L

LDB> rarun

~ .. . Al- —--- WI-.1 .---~ # -L.—–.-—.

.

The above watch command requires some explanation. The in BURN clause tells LDB to

instrument routine BURN only, and to instrument all kwcalcpointable locations -- lines and labels,
This prrxess can be slow if the routine is large, which BURN is, so we’ve s~ified a code range

to instrument witn the from and to clauses.

The to clause is simply the line number of the call to XLATE, in this case line 834. We know

from the watch all result that we needn’t instrument past that point. A missing to clause would
cause LDB to instrument through the end of BURN.

The from claii was obtained by looking for the lastsubroutine call within BURN prior to the

call to XLATE. Why the previous subroutine call? A negativeinferenceavailable to us from

having nut watch in is that the teat condition (code zeroed) was not ttue for am routine called

prier to executing XLATE. Since the last previous routine was called at jine 7S5, that’s where

we’ 11start the seamh. A missing from clause would cause LDB to imtrument from the beginning

of BURN.

Perhaps the most important point to notice in the above watch command is the specified

condition, or mther the hk of it. If no condition is specified, LDB will reuse the previous
condition. (And if there is no previous condition, LDB will generate a tsiviaily true condition.)

The result of the second watch natTows the problem down to an assignment into a pointered array.

Although the may mfercnces are ail in bounds, the pointer itself is seen to have the octal value

366b; evidently the Winter has kcn corrupted. Since the pointer points into code space, any

assignment to the pointce will ovemmitc code.

Implementation

Conditional watchpoints are implemented in LDil by patching the traced process to check for iijc

watch condition on-the-fly while the prncess continues running. This is accomplished in two

stages, code generation and process instmmentution.

(3NJcGeneration

LDB contains its own mini-cnmpiicr, capable of genemcing code for most Fortran condi[iomd

cxpressiom. The compiler supports the stnmhrd rcltitiomd o~rators, itnd uses a short-circuit

[cchnique to evaiuatc book.an combirmmms of rclntional clnuscs. Arithmetic expressions urc

lm]ited to simple infix opcmtors, bit manipulation intrinsic, an kidircctkm function, and n

register [ECCSS intrinsic, Integer and single precision real arc the only duta types supporled.

1.Imlled support for C-language syntax is available, including C-style army references, bit

opcrtimrs, and pnintcr dcrctercncing, however non-word data types such as chtiractcrs tind

structures am hot supprtcd.

T!tc compiler is simple, si[!ing on mp of the LAI.R (YACC generated) parser ml nllocnling

iiddrcss imd scalar rcgislers m dual sfacks, optimization is done via rcpmcd pMscs through iI

prrphole optimlzcr. ml by recognizing mdinxt nddrcssing sltumions during code genmntmn.

Mnuhinr wdc lii~.d wl[h relocation in(ommtmn is gcncralcd nt ~hc tlmc the watch commimd IS

processed; executable text is relocated and patched into the target executable as part of run

command processing. No usc is made of CRI compilers, assemblers, or loader;.

Process Instrumentation

On-the-fly checking of the watch condition involvss re-routing program execution to check the

condition at regular points in the program. In our initial implementation, we attempted to

instrument at the Iindlabel level for a subroutine or subtrec as specified by the user. The subtree

could be as large as the entire program if the user called for a subtree with the main program as

the root. While this technique found the watch condition in one pass and worked fine for small

programs, the time required to do the instrumentation and code s~e required in the traced

process for large programs renckml this approach infeasible. We settled upon an
implementation that quickly instrumented the entire program at the subroutine level while

requiring little code space in the traced process. Once the offending subroutine was located, a
second pass could effectively instrument at the Iindlabel level in that subroutine only, and home-

in on the offending cock at a granularity dependent upon the optimization level used in compiling

the code being watched, Los Alamos uses the CM CFI’77 compiler on UNICOS cordlgurcd to
always generate symbol tables and generate code at an intermediate optimization level which
causes symbol table lines/labels to be generated at optimization block boundaries.

The first step in processing the LDB run command is to instrument the traced process with all

active breakpoints and watchpoints. The mechanics of watchpoint instrumentation depend upon

whether the user is doing a watch all or a watch in,

For either watch option, the first instrumentation step is to patch in and relocate the pseudo

machine code generated by the parser in the code generation phase, The traced process is then

instrumented to rc-route execution flow to execute the conditional code,

Watch d causes LDB to instmment all subroutine entries and exits in the traced process that

contain “standard” entry sequences. Thus, even system hbrary routines that were not compiled

with symbols, but contain a “standard” entry sequence, are instrumented. The entry sequence is

modified to cause a return jump to the ccmditionnl code. lf the condition is satisfied, a zero

instructio~ ~n the conditional code is executed causing a SIGERR signal to be generated. The

traced process signal mask is setup to trap the SIGERF!, the traced process becomes stopped, and

control returns to LDB. The traced process program counter is then modified to the point where

execution flow was re-routed so that the user sees execution stopped at the appropriate place in

the process. WatchPoint (and breakpoint) instrumentation is cleared prior to returning control to

theuser.

tx It checking for the watch condition is accomplished by modifying the rrturn uddrcss stored in

register B(X) (c’ray convention) via the conditional code entry cxccutinn is routed through. Upon

return to (he “standtird” entry sequence, the modified register BOO IS stored in the traccbnck ;ma

;Issuciiitcd with the subro~Jtine to be restored ;U subroutine exit (mrmal entry sequcrwc

mechanics), The last Instruction in a standard CRI exit sequence IS n jump [o the address stored

in register M)(I, which was tnodificd to cause a jump to the conditional code. Thus, no

mtxJiflcution of exit sequel]cc code is required. A stuck O(origirud register 1100 con(cnts is

mitintaincd in n scrutch i~rtil In the titiccd process, If the comlitmn is not sattsllcd during the exit

check, register BOOis restored to its original contents (at subroutine entry), the stack of saved
returnaddresses is popped. and execution continues at the restored returnaddress.

Instrumentation of the entire program using this t~hnique can be accomplished quickly because
only one pass is required through the loader-generated list of entry points and no symbol table

access is rquircd The instrumentation scratch code space required is small bwause a standard

template of conditional code works for all “standard” entry (and exit) sequences.

Wa*ch in causes LDB to instrument all lines and labels in a specific subroutine (possibly within a

user specified range) to route execution flow through the conditional code associated with the

watchpoint. The machine instruction located at a lindlabel is overlayed with a returnjump 10 a
code template for the lindlabel. The code template executes the ovcriaved instruction then jumps

to the conditional code, If the condition is satisfied the process stops as described above,

otherwise a jump tothecontents of tegister BOO occurs and execution resumes at the instmction

following the one that was overlayed (register B(M was set in the return jump inst.mction). This

technique requires about .Sne word of code space per Ii:dlabel instrumented for the code

template, plus Ihe code space ~equi,~d for the conditional cude.

For subroutines containing thousands of iines and labels it is possible that the cdb.r$cnd code

cpace scratch block will overflow (we allocate 512 words of code space in every UNICOS
executable to be used by the debugger for instrurtmntat.h). If this occurs, LDB will prompt the

user for the name of a code block or data block (must reside e 4MW) where instrumentation

resumes. Good candidates for additional code scratch space on UNICOS are file conversion

routines (IBM2CRAY, etc.) that are called only if a user assigns an attribute to a file that causes

automatic data conversion during I/(). In practice these routines are never called and thus the

code space is available. The choice is the users. The debugger does not assume the presence of

particular code blocks sense they may go away with a future release of the operating system. The

user may respond to the prompt with a -R> which aborts the watchpoint instrumentation. The

user-specified block is restored to its original contents when the watch condition is disabled (re/

watch), You can see why this approach is not viable f~r an entire large program containing

I,undreds of thousands of lines and labels. The code space and cpu time required to do the

instrumentation is prohibitive. But within the scope of one subroutine this approach is viable.

Watchpoint Summary

1.DB’s watchpoint facility provides a unique and efficient method for isolating data corruption

bugs. The watch all command quickly instmments all entry and exit sequences; it is used to

lsdate the routine that is causing the corruption, A second run using the w(jfch in command may

bc needed to isolate the problem code further. The from and to clauses are used to limit the

expensive Instrumentation done by wurc}i m,

Integrated Performance Analysis

Performance analysis provides the user with ~~tistical information about where CPU time was

spent during a run of a program. With this information, the user can determine program
bottlenecks and can often greatly enhance overall perfmrrumcc via small changes to specific areas

in the program. A programthat fails to deliver right answers iu a timely way is little better than a
program that produces wrong answers. Therefore, the analysis and tuning of program

performance can be considered a form of debugging. Integration of performance analysis with

the debugger combines statistical profiling with process control. A user can achieve fine-grained

performance data, for example one pass through a d~loop, which is not possible via stand-alone

performance analysis.

Cray Reseamh performance analysis tools require that the user load with a special library

(LIBPROF) to enable profiling. A subsequent run produces a profile data file that must be run

through the CRI PROF and PROFVIEW utilities to produce a report. The Los Alamos Debugger
integrates statistical profiling such that the user does not need to load a special library and

invocation of the PROF and PROFVIEW utilities is automatic. Thus, performance analysis can

be done on the production version of a code.

User Intetjizce

Profiling is controlled by typing profile at an LDB prompt, followed by ova,@ cfear, Amp, or

report. Profiling data is accumulated for each run ti”tcr profiling has been turned on. Sampling is

disabled by turning profiling ofl. Data from previous runs may be erased with the clear option.

Profiling statistics are generated by report, which puts the user into a PROFVIEW session to

view the results. Further analysis can be done by generating the raw tile appropriate for PROF

input via dump.

The following example illustrates LDB’s features. Say that we’re budding a multi-user database

system in which the performance of the system as a whole is important, but in particular the
performance of the UPDATE function is critical -- we don’t want lock the entire system for very

long each time we need to update our tables.

Profiling (his code as a whole won’t be very helpful since we require not aggregate times, but

times relative to a particular activity. Knowing that routine ABC consumed 35% of out compu .C

cycles does not tell us how important ABC is to our time-critical UPDATE function; perhaps

UPDATE doesn’t rely on ABC at all.

Here’s how an LDB user would profile a pwticular logical segment: (For clarity we’ll show the

[.D13 prompt as [LDB>].)

LDB> run to UPDA1’B
LDB> profilo on

LDB> run tO $999 # la-t •tat~.nt in UPDATB

LDB> prof~lo off

LDB> profila raport

,.. - Am__.. —hl–.l. —_9. -L. . .

Thus we’ve managed to profile only the routine UPDATE and its children, with timing statistics

for the children twcmed only when invoked within the UPDATE call-tree.

In a real databae system the time to & a single UPDATE may vary widely depending on scope

and system load - timing a single instance may be misleading. We can profile all invmadons of
UPDATE together by doing the following:

~B> bkp UPnATX
LDB> limk EJ?=!CB to “profile on) run=
LDB> bkp $999@UPMTB

LDB> link $999euFMm to “profila Of fl run”

LDs> -

LDB’s link command is used to aasuciate a string of LDB commands with a given breakpoint,
which is automatically executed whenever the breakpoint is hit. Theabove sequence will turn

profiling on (off) at -h entry to (exit from) UPDATE, and then continue the run. At the
completion of the mn (LDB stops at $exit, just before termination) we’ll issue a profile repofi to

view the accumulated data

PROF and PROFVIEW

E!othPROF and PROIW’IEWam CRI developd tools for presenting the results of a profiling mn.

We won’t document them here except to give a couple of simple examples,

LDB’s profile wpoti command is equivalent to the following seqllence:

LDB> profilo dump

LDB> ●h “prof -x {your_6xacutablc) > rawf ila”
LDE)> ●h “profviaw rawfilom
LDB> ●h ‘rm rawfilo”

The prujile dump command creates a proftle file containing the sampling data collected so far.

LDB’s sh command ruI IS quoted UNIX commands un&r a shell; here we first use the PROF

utility [o post-process the results, and then PROFVIEW to view them. lf you’re in an X-Window
System environment, PROIWIEW will create its own window, otherwise a Iinc-mode menu

interface is employed.

PROF can also be used to format a repot directly. After creating the profile data file am! exiting

LDt3, the foi!owing will generate a summary of activity fur those arem~of the code that consumed

more !hat I % of the mtaJ profiled execution:

prof -SI -H I {your_executahle) > repwt

The scope and impact of profiling can be controlled via debugger varkblcsi The effect of these

vimi~bles will bc clarer if wc understand n little abou~ how profiling is implemcnlcd on UNIC’OS.

Los Alamos Natbnat Idoratory

A process that wishes to be profiled dcm so by first logically partitioning its instruction segment

into a set of “buckets”, where the number of buckets depends bth on the size of the program

instruction segment to be monitored, and the size of each buckti. By default the entire code

segment is monitord and the bucket size is 4 words. This may % altered under LDB by setting

$PROF..SADDR (start adclm.ss), $PROF.EADDR (end addres~), and/or $PROF_WPB (words

~r bucket).

The profiling process then allocates memory from the heap to hold counters for the bucket set,

passing a pointer to this area, along with a sampling internal. to the UNICOS kernel via a system

call. Profiling is now enabled The default sampling internal of512 microseconds can be altered

by setting the LDB variable $PROFJUTE (a poor choice of terms because this is really a

sampling interval, not a rate - we are following Cray conventions here).

For sny process that has rquested profiling, the UNTCOS kernel periodically intertupta that

process to examine its program counter (pc). The kernel then maps the pc to a logical bucket, and

increments the cotlqxmding bucket counter in the target process. At the end of execution, the

profiled process dumps its bucket counters to the file named by the LDB variable $PROF_DATA,

(default file name is prof&ra)..

The LDB variables mentioned above, minus the kding dollar sign, comeapond to the
environment variables thatcontrol CRI’S~ofiling Iibrtuy, LIBPROF.

As always, there are trade offs to be considered when changing the defaults. Setting ~ smaller

bucket size to uhievc finer granularity will require a larger heap for the profiled prwess. The
heap rquirementa can be reduced by setting stat and end addresses to monitor only a fraction of

the application’s code. Bmause profiling is an expensive procedure rquiring repeated opmiting

system intervention, the variable $PROF_RATE should be set to a high number (lowering the

frequency!) when profiling any long-running job, The only negative effect of setting this

parameter large is to degrade the statistical quality of the report, an effect mitigated by the size of

the job.

Implementation

The implementation of statistical profiling in LDB is done in three phases: initialization, enabling

(disabling), and reporting,

Initializdom

During the code instrumentation phase processing of the firstmn command following the first

pr(~filr on command, LDB initializes profiling in the waced process. lnititdizaticm prepnres the

moced prwess to collect statistical profiling data during subsequent runs. Memory is allocated in

the heap of the trtwed process to hold the profiling data. This is done by setting up II call m

nr.ulhw in the traced process while the process is stopped (standard CR1 nrgumen~ hst

conventions), setting the traced process prugnun counter to the entry point for mulloc, mid setting

register I-IO(I to the code Immtioa of a zero instruction The traced process is then releuscd (o mn.

The process runs through MMJ11OC allocating n block of memory on the heap as s~ifiml in [he

Input ur~umcnls. The process rclurns m !he cmle lun~ion s[orcd in register INN on entry, which

LM AISW Ndonat laboratory 9 (Mobrr I 992

was modified to contain the address of an instruction containing a zero instruction, which stops

the traced process and returns control to LDB. LDB then saves the contents of register S 1 (Cray
fimct.ion return convention) in tie traced process which contains the address of the mulfoccd

block. This address is later used as an argument to the profile system call during the enabling
phase. l%ofiling is initialhd once. Debugger variables that control bucket size and code range

must be act prior to initialization as they affect the size of the heap alhxatcd in the trwcd prmesa.

Enabling (dIsabJin@

Profiling is cnttldcd during the talc imtrumentation phase of - commwtd processing following

profile initialization, l%~filing may bc enabled and disabled many time during a debugging

session, but initialization occurs once. Enabling profilinginvolves patching in code in the traced

process to execute the pro,4Je system call. WMle the process is stopped, LDB sets up an

argument list following standard Cray system call conventions, and patches in the following
instructions:

The SM instructions have to do with Cray muhitasking. The EX instruction is an exchange to the

UMCOS kernel to ex~utc the profile systcm call. LDB actup the system call argument list

spcifying sampling rate, Ioction of profile data buffer (rctumed from muffoc), and start and end

of code area bing profiled. These arguments are controlkd by the user via &bugger variables

and must be set prior to enabling profiling. Once the above code is patched in, LDB sets the
program counter of the traced proms to the patch code and releases the process to run. The

process stops at the zero instruction (ERR) and control rctums to LDB. Statistical profiling is
now enabled. Profiling is disabled by the same mechanism but wi~h a very large sampling

rwe(intcrval),

Reporting

Profiling smtistical data is reported to the user by LDB upxt entering the pr(~ilf rqwti commnnd.

This data is cumulative md represents runs after initialization when profiling wm cmblcd (on).

Profile data may be clcarcd (scrod) by the user vin the pn~jile cleur command. Reporting is

Implcmcntcd in LDB by generating a profile dINa file suitublc for input to the PROF u[ilit y. 1.Dtl

reads data from the profile data buffer in the henp of the traced process us input to the gcncrution

of il PROF’ input file. I.DB then issues n shell cornnmnd IO run the PROF utility on the profile

diit:~ file crcatcd. PROF nssociaics profile dntn with symbol Mdc infmmntion nnd gcncmtcs M

IIIpUI file for the PR(WW[EW utility. 1.D13 then issues u shell commm.1 to execute PROF’V IF.W

on the PROF output. PROFVIEW is an interactive utility thnt d%plnys plofiling dnta to the user

ill vnnous formats utilizing a command line or X-window imcrface. The profile dntn file is

rctnined nftcr the dchugging session is tcnninntcd for futlhcr nnnlysis by the user. The nwne oi’

the profile dntn file is controlled hy the user via n dchuflger vnriuble. Thus, scvernl dntn film tnny

hc ~cncrnled und snvcd :11dil”fcrcnl poinls in the pn)grmn.

Integrated Pe~ormance Analysis summary

Sampling data for statistical proilling purposes can be collected ad controlled via the LDB

proj?le command Sampling characteristics can be altered by setting debugger variables to control

granularity, range, and frquency. profiling repoms are generated with the standard UMCOS
K)Oh PROF and PROFVIEW.

11

Integrated Coverage Analysis

Coverage data reports whether or not cmle was executed at least once. Coverage information can

be useful in analyzing the effectiveness of a program test suite, tracking where new tests need to

be develo~d, and determining “&ad” code. Typical coverage tools are source level translators
that instrument source code with library calls to gather coverage data at block boundaries. These
tools are language dcpdant and require that an additional version of !he code be maintained in

order to analyze coverage. We arc integrating coverage analysis into LDB much like

performance analysis, although with a different internal mechanism. Integration into the

debugger combines coverage analysis with prmess control allowing the user to control scope and

granularity similar to integrated profiling. Coverage analysis via the debugger can lx done against

the production version of the code (must be compiled with symbols) and sum a combination

of source languages (cument.ly fortran, Irltran, C, and cal). The integration of coverage analysis

into LDB is currently in development.

User Inle@ace

The syntax of the LDB cover command will mirror the profile command. Five options will be

supported: on, ofl clear, dump, and repoti. Coverage analysis will be turned on and C@ by the

user as required during the debugging session. A coverage analysis data file will be generated via

the dump and reporr options, Coverage data will be viewed via the repoti option. Debugger

variables will control the range of code space in the med process to be covered and the name of

the coverage data file. LDB will invoke a locally written utility to report covemge data to the

user.

Implementation

Imegmted coverage analysis will be implemented using existing LDB temporasy breakpoint

technology. During the initialization phase (first nuI command following first cover (M
command), LDB will pq.wlate the internal brealqmint table (a linked list) with LDB-genemtcd

temporary brcalqmints at all lines and labels within the rmge of code space being covered rIs

spccified by the user via debugger variables. The temporary brcalqmints are then applied to the

mwcd process m normal, When a coverage tempcmq breakpoint is hit a routine will be called to

update covernge data and the temporwy breakpoint will be released, Thus. a code block will be

[rapped for coverage only once, which is all that is rcqumed. The effect cm performance should

not he great bccau.se the traced process is only stopped once af etich code block boundary.

C“overage will be disabled by setting covemge temporary brcukpoims to a disabled state In (he

breakpoint uible. Coverage data will be cleared merely by zeroing the cover data iiccumulated in

1.IN+. A coverage data file will be generated while processing [he dump und r~porr op[mns, ml

WIII he retnined after the debugging session terminates.

Integrated Coverage Analysis Summary

[AH Almws ~athmd bh~ti)ry 12

Other Applkatkm

Other possible applications of code instrumentation technology include incremental compilation,

automatic data race detection, and integramd visualizationhrdmation.

Incremental compilation would allow the user to compile new routines at debug time to be

patched into the -ed mess. Thus, calculations and analysis not anticipated at compile time
would be suppcmed and would run at fuU speed.

Data ~e detection will kome increasing important as the high performance computing

community movca to disrnbuted and MIMD parallel conqmting environments that introduce non-
determinism in pqyartt execution. An integrated debugger tool to detect data races on-the-fly
would be VCry ttsefui.

Integrated visualization is a feature of many debuggers now, including LDB. Debuggers allow
visual snapshots of data while the process is stopped. implementations typically pipe user data to

a graphics promss or call internal hard-wired graphics routines. Piping provides flexibility at the

expnse of perforrnanc e (LDB utilizes piping). Internal hard-wired graphics provides better

performance (ie can handle more user data) at the expense of flexibility. I suggest for future
development debugger functionality thm allows visualization (animation) of user data while the

code is mnning via non-intrusive code instrumentation.

summary

Code instrumentation is a powerful debusgcr tool capable of integrating diverse functionality

under debugger control. This paper describes three applications and suggests others for future
consideration.

I m A lmMM Ndond Idmmtory l.! (ktobrr 1992

The Application of Code Instrumentation Technology
in the Los Alamos llebuggm

Fast Conditional Software Watchpoints
Integrated Performance and Coverage Analysis

Supercomputer Debugging Workshop
October, 1992

Jeffrey S. Brown
Los Almnos National Laboratory

Fast Conditional Software Watchpoints

Code generation

mini compiler
fortran, limited C
peep-hole optimizer
three stage compiler:

machine independent “stack” code
relocatable pseudo machine code
absolute machine code

Process Instrumentation

on-the-fly detection
two pass approach
watch all mechanism
watch in mechanism

TMC collaboration

cwnpiied events

r:/usr/tmp/ jxyb\ldb% ldb -n test/ tesc77yez. x

ldb version 1.3

built: 09;21/92 at 12:29:51

attached to absolute file: test/test77yez.x

entering debug mode ...

processing conunandsin .ldbinit file ...

$srcdir = 0000000000000000000000

Ssrcdir = 0721453467200000000000
TEST> -teh ●ll for k .g&. 1234

TEST> list

watchpoint active (watch all for k .gt. 1234)

no user-specified breakpoints

TEST> rum

instrumenting code for wacchpointing: done

watchpoint condition met in subroutine: SUB (detected at exit)

user process stopped at program counter: 445pb = 48L @ TEST() - 14pa
TEST> uetch A= sub
TEST> list
watchpoint active (watch in sub for k .gt. 1234)

no user-specified breakpoints

TEST> rem

instrumenting code for watchpointing: done

watchpoinc condition met

user process stopped ac program counter: 475pa = 5L @ SUB()

SUB> k

00000243020b: k = 1235

SUB> Ii-t sourcs
subroutine sub(ch,k)

character*(*) ch

c print “,“in the userpcrt routine”

SUB() k=k+l

❑>W 5L return

end

. ..

r:/usr/tmp/ 5xyb/ldb% ldb test/test77yez.x

ldb version 1.3

built: 09/21/92 at 12:29:51

w $5

attached co absolute file: /uar/tmp/ld4402B.copy (copy of

test/test77yez.x)
entering debug mode ...

processing commands in .Mbinit file ...

$srcdir = 0000000000000000000000

$srcdir = 0721453467200000000000
TEST> ~tch ●ll fOr kk .-. 43al

TEST> list

watchpoint active (watch all for kk .gt. 4321)

no user-specified breakpoints

TEST> *

instrumenting code for watchpointing: done
watchpoint condition met in subroutine: TEST (detected at entry to SUB)
user procees stopped at program counter: 471Pc = SUB() + 2pc

SUB> -tch in tomt
SUB> list

watchpoint active (watch in test for kk .gt. 4321)

no user-specified breakpoints

SUB> r~msn

instrumenting code for watchpoincing: done

watchpoint condition met

user process stopped at program counter: 343pc = $1OA @ TEST()

TEST> kk

00000243021b: kk = 4322

TEST> list ●urco
)c=o

kk=O

P= lot(b)
5 continue

kk=kk+l

do 10 i=l,maxi

do 8 l=maxi, l,-1
b(i) = 100-1
cii) = i + b!i) - 1

a(i) = b(i) +c(i) + i + 1

w SH13 8 continue

w $1.(1
w 51OB 10 continue

pa(l) = 23.0

‘rE!;TD

TEST> cdbx$cnd+3’~70
00052426pa: 031200
00(152426pb: 110 0 CO 01263400001
00052427pa: 110 1 00 01263600001
00052427pd: 110 2 00 01264000001
00052430pc: 100 1 00 01272200001
00052431pb: 030110

00052431pc: 111 3 00 000

00052432pb: 110 1 00 01272200001

00052433pa: 024 1 00

00052433pb: 025 1 76

00052433Pc: 020 1 00 12455000001

00052434pb: 025 1 00

00052434Pc: 025 2 77

00052434pd: 051101

00052435pa: 022 0 00

00052435pb: 120 1 00 10604000001
00052436pa: 040 2 00 00464400000

00052436pd: 061 0 2 1

OO052437pa: 016 000252177

00052437Pc: 031000

00052437pd: 044444

00052440pa: 024 1 76

00052440pb: 071 0 1 1

00052440pc: OIT 000252301

00052441pa: 024 1 77

00052441pb: 071 0 1 1

00052441pc: 017 000252236
(JQO~2442pa:100 1 00 01263600001
00052442pd: 100 2 00 01264000001
00052443Pc: 010 000252227
00052444pa: 100 0 00 01263400001
00052444pd: 025 0 77
00052445pa: 030002
!10052445pb: 035 1 77
300S2445PC: 000 000

00052445pd: 100 0 00 01263400001
00052446cJc: 025 0 77
00052446pd: 030002
00052441pa: 035 1 77

00052447pb: 005 0 76

ooo5.’447pc: 100 1 00 01263600001

00052450pb: ;00 2 00 01264000001

00052451pa: 010 000252255

00052451pc: 100 0 00 01263400001

00052452pb: 025 0 77

A2 -1

00000205316,0 AO

00000205317,0 Al

00000205320,0 A2

Al 00000205351,0

Al Al+l

, Al A~

0000020535i,0 Al

Al

B76

Al

Boo

B77

S1

Ao

S1

S2
so
JSP

AO

S4
Al
so
JSM

Al

so

JSM

Al

A2

JAZ

Ao

B77

AO

O,AO

ERR

Ag

B77

AO

IIvAO

J

Al

A2

JAZ

Ao

f377

BOO
Al
00000252264
Al
A2
S1

00

00000243020,0

00000002322

S2-S1

00052437pd

-1

s4&s4

B76

+Al

00052460pb

B77

+Al

00052447pc

00000205317,0

00000205320,0

00052445pd

00000205316,0

AO

A2

B77,AI

00000205316,0

AO

A2

B77,AI

B76

00000205317,0

00000205320,0

00052453pb

00000205316,0

AU

K @ TEST()

cdbx$cndo + 14pd

cdbx$cndo + 35pb

cdbx$cndo + 24pc

cdbx$cndo + 22pd

.)1),,

OO052452pc:

OO052452pd:

OO052453pa:

OO052453pb:

OO052454pa:

OO052454pb:

00052454pc:

OO052454pd:

00052455pa:

OO052455pb:

00052’C5PC:

OO052456pb:

OO052457pa:

OO052457Pd:

OO052460pb:

00052461pa:

OO052461pd:

OO052462PC:

00052463pb:

00052464pa:

OO052464pb:

OO052464PC:

00052465pb:

OO052465pd:

00052466pa:

024 0 66

024 2 66

000 000

100 0 00 01263400001
025 0 77
024 0 66
024 2 66
005 0 76
O3J1OO

025 1 76

130 0 00 01262600001

130 1 00 01263000001

130 2 00 01263200001

006 000252164

120 0 00 01262600001

120 1 00 01263000001

120 2 00 01263200001

100 1 00 01272200001

101 2 00 000

025 2 00

031110

110 1 00 01272200001

010 000252330

000 000

005 0 00

AO B66

A2 B66

ERR

AO 00000205316,0
B77 AO

Ao B66

A2 B66

J B76

Al -1

B76 Al

00000205313,0 SO

00000205314,0 S1

00000205315,0 S2

J 00052435pa cdbx$cndo + 12pa

so 00000205313,0

S1 00000205314,0

S2 00000205315,0

Al 00000205351,0

A2 , Al

Boo A2

Al Al-1

00000205351,0 Al

JAZ 00052466pa cdbx$cndo + 43pa
ERR

J BOO

r:/usr/tmp/jxyb/ldbt ldb 1.3a/bin/tray-ymp/ldbl.3a

ldb version 1.3

built: 09/21/92 at 12:29:51

attached to absolute file: /usr/tn@/ld44287.copy (copy of
1.3a/bin/tray-yntp/ldbl.3a)

entering debug mode ...

processing ccmmunds in .ldbinit file . . .

$srcdir - 0000000000000000000000

$arcdir = 0721453467200000000000

main> h4 ldcl~
main> rua with ‘-a tmmt/t.mt77yam.x.

ldb version 1.3a

built: 10/02/92 at 17:25:39

attached to absolute file: test/test77yez.x
entering debug mode . . .
processing commands in .ldbiric file ...

$srcdir = 0000000000000000000000
$srcdir = 0721453467200000000000

TEST> SUD\10
SUB() =

00000467pa: 020 0 00 37724000000 AO
00000467pd: C25 O 77 B77

00000470pa: 020 2 00 377226000C0 A2

OOOO0470pd: 030002 Ao

00000471pa: 022 1 04 Al

00000471pb: 035 1 77 O,AO

ooooa471pc: 025 2 02 B02

00000471pd: 025 6 01 BO1
00000472pa: 024 7 01 A7

00000472pb: 107 1 00 00000400000 Al

●

00000177520

M

00000177513

A2

04

B77,AI

A2

A6

BO1

00000000002,A7

TEST> retch ●ll for k .gt. M

TEST> ru

inscrumencing code for wacchpointinq: done

user process stopped at program counter: 6221Pc = 21L @ Mclrbkpo

ldclrbkp> ●h

r:/usr/tmp/ jxyb/ldb% imquixy

Machine R Mon Ott 5 20:11:44 1992
User=jWb uid=[1726]:

PID SIZE SECONDS_USED-USER+SYSTEM ‘ITY:PROCESS_STAmlS

[424161 0.07MW CPU= 0.4470+ 0.8136s L7:cah SLEEPING

[43867] 0.07MW CPU= 0.4128+ 0.6145s pO08:csh SLEEPING&

[44287] 0.36Mw CPU= 0.5353+ 0.6435s pO08:ldb SLEEPING&
[44288] 0.05MW CPU= 0.0401+ 0.0467s pO08:klam SLEEPING&

[443361 0.35MW CPU= 0.4739+ 0.3608s pO00:ld44287. STOPPED&

[44337] 0.05MW CPU= 0.0399+ 0.0280s pO08:klam SLEEPING&

[443s4] 0.1- cPu- 0. 0667+ 0.0124S DOOQ:tm~t77y0 6~~P8~

[44359] 0.03MW CPU= 0,0040+ 0.0053s pO08:sh SLEEPING&

[443601 0.06MW CPU= 0.1410+ 0.2153s pO08:csh SLEEPING&
[44363] 0.32Mw CPU= 0.0022+ 0.0148s pO08:inquiry RUNNING on
CPU 1

r:/usr/tmp/jxyb/ldb9 Mb -p 44354 tmmt/t.mt77yox.x

ldb version 1.3
built: 09/21/92 at 12:29:51

attached to ruining process: /proc/44354
entering debug mode . . .
processing commands in .ldbinit file . . .

Ssrcdir = 0000000000000000000000

Ssrcdir = 0721453467200000000000
TEST> Wnl\10

SUB ()

00000467pa: 020 0 00 37724000000
0@OO0467pd: 020 2 00 37722600000
ooooo470pc: 022 1 04

00000470pd: f1243 00

0LJOO0471pa: 007 000252131

ooooo471pc: 025 2 02

00GO0471pd: 025 6 01

000004”12pa: 024 7 01

00000472pb: 107 1 00 0000!1400UO0

000004-)3pa: 121 7 00 000

mm.

=

AO

A2

Al

A3

R

002

ml 1
A7

Al

~7

●

00000177520

00000177513

04

BOO

00052426pb

A2

A6

Do1

000000(.)(J002,A”I

,A.

CdbX$CKdo + 3ub

)p

r:/usr/tmp/ jxyb/ldb% ! !
ldb 1.3a/bin/tray-ymp/ldbl.3a

ldb version 1.3
built: 09/21/92 at 12:29:51

attached to absolute file: /usr/tmp/ld44538.copy (copy of 1.3a/bin/tray-ymp/ldbl.3a)
entering debug mode . . .
processing commands in .ldbinit file . . .

$srcdir = 000000000000(3000000000
$srcdir = 0721453467200000000000

main> ti~ Idclxx

main> mm with ‘-a t@st/taat77ye8.x=

ldb version 1.3a
built: 10/02/92 a~ 17:25:39

attached to absolute file: te9t/te9t77yez.x
entering debug mode . . .
processing commands in .ldbinit file . . .

$srcdir = 0000000000000000000000
$srcdir = 0721453467200000000000

TEST> $5\S
$5 @ TEST() = ●

oooo(3334pc: 042 3 7 7 S3 1

00000334pd: 060 6 7 3 S6 S7+S3

00000J35pa: 040 7 00 00031000000 S7 00000000144

uoooo335pd: 041 5 00 00030600000 S5 1777777777777777777634

00000336pc: 130 6 00 10604200001 00000243021,0 s6 KK @ TEST()

‘rEST> watch fOZ kk .gt. 54

TEST> nIn

Illstrum[?nting cc)de for w~tchpoinr.ir)q: dorle

u:;t?r prt)(:~ss sr.opped at program (:ourlt~?r: f)221p(’ = 211, @ I(irml]t)kpo

l(h+lrbkp ●h

r:/usr/tmp/jwb/MbQ iauuizy

Machine R Flon Occ 5 20:18:25 1992
User=jxyb uid=[1726]:
PID SIZE SECONDS_USED_USER+SYSTEM ~Y:PROCESS_STATUS

[424161 0.0714W CPU= 0.4470+ 0.01368 L7:csh SLEEPING

[43867] o.07Flw cPu- 0.4207+ 0.6410s pO08:csh SLEEPING&

[445031 0.12MW CPU= 2.4194+ 24.6967s pO08:tesc77ye IN MEMORY&

[44538] 0.36MW CPU= 0.5361+ 0.5048s pooe:ldb SLEEPING&

[445391 0.05MW CPU= 0.0402+ 0.0816s pO08:klam SLEEPING&

[44551] L).36MW CPU= 0.3066+ 0.27408 pO08:ld44538. STOPPED&

[44552] 0.05UW CPU= ().o~gg+ 0.0762s pO08:klam SLEEPING&

[44ss0] O.law cm= 0.0941+ o.o13as Booaltamt77ye mO??BM

[445591 0.03HW CPU= 0.0040+ 0.0074s pO08:sh SLEEPING&

[445601 0.06MW CPU= 0.1406+ 0.2128s poo8:csl? SLEEPING&

[44562] 0.32MW CPU= 0.0022+ 0.0149s pO08:inquiry RUNNING on CPU 1.
r:/usr/tmp/jxyb/ldbt ldb -p 44550 ceet/tegt7°1yez.x

ldb version :.3

built: 09/21/92 ~t 12:29:51

atLached to running process: /proc/44550

entering debug mode ...

processing commands in .ldbinic file ...

$srcdir = 0000000000000000000000

$srcdir = 0721453467200000000000
TESTD #S\5

$5 @ TEST()

13011003”J4pc:007 000252204

oooodl]5pa: 040 7 O(J00031000000

(I[luoo.llspd:041 5 00 00030600006

()[)ol)u”):)fipc.110 6 00 106(’)4200001

mlflool17pb:” 130 3 00 106f?4400001

‘:’K::’l’.ooo9a441pa\s

l]Ol)1>J441pa:042] 7 v

:](]01Ji!441ph:()(1()6 “) !

of)(!’J2441p(!:(Jof)()()02521!()

f)l)[)’)#!442~a: 0;!4-/01

()()11’1.:44;!1)1):(){()(1‘1(1

= ●

R oooH441pa ccibx$cnclo * l(Ip,l
;;7 (-)(1000000144
CJIj l“7’177”?77777’l”l”?”l’17”1’?634

00000;?41021,0 S6 J(K@ TFX’1’()

f)oor)l124.!022,(l”S.1 KK @ TE:;’I’[)i l})

::, I
:;() ::”)*:;.]

J 00052d26pe (’,111)(5,,11,10 I ~1.1

A“l 110?

A(I AIII

TEST> 00052426~\30

00052426pa: 130 0 00 01262600001

00052426Pd: 130 1 00 01263000001

00052427Pc: 130 2 00 01263200001

OO052430pb: 110 0 00 01263400001

00052431pa: 022 0 00

00052431pbl 120 1 00 10604200001

00052432pa: 040 2 00 00015400000

00052432pd: 061 0 2 1

00052433pa: 016 000252157

OO052433PC: 031 0 0 0

00052433pd: 044 4 4 4

00052434pa: 120 0 00 01262600001

00052434pd: 120 1 00 01263000001

00052435Pc: 120 2 00 01263200001

00052436Pb: 010 000252177

00052436pd: 100 0 00 01263400001

OO052437PC: 000 000

0CJ052437pd: 100 0 00 0. :63400001

00052440Pc: 005 0 00

00052440pd: 051 1 0 1

00052441pa: 042 3 ~ 7

@O052441PD: 060673

00052441pc: 006 000252130

00052442pa: Lt24 7 03

00052442pb: 030070

000!i2442pc: 006 000252130
0005i!443pa: 075 3 06

00052443pb: 055 3 01

00052441pc: 006 000252130

oo[)52444pd: 020 0 00 01751600001

‘rlt!:T ●

00000205313,0 SO

00000205314,0 S1
00000205315,0 S2

00000205316,0 AO

AO

S1

S2

so

JSP

AO

S4

so

S1

S2

JAZ

AO

ERR

AO

J

S1

S3

S6

J

A7

AO

J

TO6

S3

J

Ao

00
00000243021,0

00000000066

S2-S1

00052433pd

-1

S46S4

00000205313,0

00000205314,0

00000205315,0

00052437Pd
00000205316,0

00000205316,0

BOO

S1

A

S7+S3

00052426pa

1303

A7+1

00052426pa

S3

S3>77

00052426pa

()()0()020”164”1

KK @ TEST()

cdbx$cndo + 10pd

cdbx$cndo + 14pd

,!’

Integrated Performance Analysis

Interested in where cycles are spent

statistical profiling

Profiling against production version of code

no special libraries required at load time

Initialization

run through mufloc in traced process

Enabling

patch in exchange to pmjile system call

run through patch code

Reporting

generate (;R1 standard profile dutu file

shell (!W’il$)t! to PROF” and PROFVIKW

Integrated Coverage Analysis

Interested in code executed at least once

useful in determining validity of testing,
which test need to be developed,
weeding out “dead” code

Coverage analysis against production version of code

no source code instrumentation
multi-language support

Initialization

temporary breakpoints at all Iinesl!abels with covered code range

Enabling

apply temporary breakpoints as normal

Reporting

shell escape to locally written interactive utility

Other Applications

Incremental compilation

Data Race Detection

Integrated Animation

CXdb:
The Road to Remote Debugging

Larry V.Weepy, Jr.
Rob Gordon, Dave Lh@e

ConvexComputer Corporation
3000 Watemlew Parkway

IUcharrlsomTX 7S0S3
meepy@convex.com

Augwt n, 1982

Abstract

In mday’s development environment, where typical sys-
tems consist of multi-hostnctw~ thereis ● nd to ma
tbe debugger on one host -’ul debug a.1application IUn-
nmg on a different host, Thi: functionality requires the
development of several components: abstractions within
the debugger to hide tie %cmote-ness” of the target po-
cess, a remote server to perform the actual debug opra-
ucms, and a protocol for communications between W
diem debugger and Lheremole server, This paper covers
Lhcdesign and implcmentrwion of these kc components
m Convcx”s (~Xdb debugging system.

1. The devclopmcm and usc of tbe Message Imerface
Genemor (MlG). In order to decrease the
devckrpsncm time and maintenmce overhead
Invnlved in b fmocol manipulation routines we
developed an automated code generation system. the
MIG. The MIGtmlsBeneratesctxic thm handle the
tasks of building packets, sending packets. receiving

3.

1.0 Introduction

packets, asIdextraming data fields from packets

2.

“lhIs ptiper dcscrilxx the implementation of remote debug-

ging u:ipiibili[lcs within [he {;Xdb debugging system

ISIl!r91 I IIIu(’11911 l[lmv91til [Conv91b]. Ibc -h
USCUm (’XdtJ is simihr w other remoteImplemcnuuicum
WIUIIm (;1)11 l$tat891, tind work done al BBN [1.awfio]
IWUMIX41.

hlI)$I rtvno[c dchusgitlg sysmis consist of three compo-

nvn[s ;I I(ICJI rlchuggcr cllem. II remote &hug SCIVer.and
ii k’(mlnlun K’illlotl prol(rcol” hetwecn the clicnl and server,

ll~urc : dmws a high level view CXdb’s remote dcbug-
RIItM cnvmmmcnl

l?w il{t~ld lli~l}l(’lllcllu~ti(]llof the (“Xtlh remote dchug8in#
\vI+mII cImlJIIncd wvcnd fcnlurcs rwl Iyplcally found in

r,lrlmr (or lrwllll~mnl) sywms, ‘Ilcse fcalurcs greatly
IIrl”rr;twd lhr dcvcll)pmt?nt time rcquirerl rind enhanced
111~rrlillf)l;llll.llllllly {)f lhc Illuit pnldllcl, “lhCy SfC:

Sofkwarc abstractions wifldn the lcd debug diem

that hhk the “remote-nesa” of the targel process frurn

tbe majrnily of the CXdb code. Ibis minr.rrmed tic

changes required to implement remote dcbuggmg.

A clean scparat.lonof tasks trctwccn t.bedebug clwnl

and rcmntc semcr. lle local debug client rs

resprmsihlc for all synbolic under?itmwlingut’ Ihe

target application. The remote server Is slriclly il
machine level debugger,

‘Ibis ~pcx will cover the following major nnuis:

●

●

●

●

The modvatlon behind the development 1)1(‘!(dho~
nxnote debugging eafmhilhy.

The Remote llcbuggin~ Prutoeol and {hc Ml(i I~NIIS
created m wtfi with 11.

The abstmctlon model used wllhin (‘Xdtr h) inlu~r;ll(’

remote pxclwrl.

‘the dcslgn of the rrmotc dchuflglng wrvur

1.1 Wtlvdlofl

Iofw

1[1’1

Archtt-tura Ovarvlow

machine.~ical computingconllguradonsincludecoop-
erative networks with multiple, often heterogeneous,
hosts. Client-server architectures are beaming the norm,
and the number of disLtibuted applications is increasing
rapidly. WItb all of this distributed functionality, the etwi-
ronment needed to effectively debug these applications
musl also become diswibulai.

Additionally, MXtSySpCC~~ COMpUtC ~ -* ●

generaf purpose frontad machineto psovideaccess ml
control. A good example is a typical real-time system
(RTS). Often, only a minimal environmem is povhled WI
the actual RTS. A more general-purpose host typically
front-ends the RTS. Real-time applications are compiled
and prepsred ontie frou[~ndandthendown-loded to b
RTS, This environment usually provides Iiule debugging
capability on the RTS. Wkb a debugger capable of llan-
dling remote processes, then all bat need be written for
the RTS is the remote debug setvcr, which mquhut fhr kas
applkahm kvel suppn than a fill symbolic debu~er

For support of kemei debugging, the remote system .?wy
not even have an a@icaticm environment in which 10 run.
Ile remote debug server can h embedded within the ker-
nel 10 be debugged. The remote semef, asdemribd in this
puper, is relatively simple to implement.

2.0 Architecture OVoWlew

Figure 1 shows W major caqcmerits within the CXdb
remote debugging system. CXdb runs on host A, he
“loca!’’hos4 mdcmusttmicates with W temote sewer on
wB, dM%mote” ltoaL~runote sewer performsa!l
actual cuntrol of the utrgc! process being debugged. The
connection between the hosls is assumed to be reliable
(Cw’rt@y mm.

Tbe initialdesign of CXdb’s remote debugging capablli-
hes was meant to be mtf6cient to auppcm remote debug-
ging bctweerI two Convex hosu ntnning ConvexOS or a
local Convex host running ConvexOS and a remote hosI
running ConvexRTMtk (Convex’s real-time kernel).

StandardUnix Internet services are used to create the
remote server. An entry Is mak in the tctc4Jemiccs file

EC a W*-10 - for connecting to the remote
aener, and ml entry to Mc/&ti.con/ will cause Inetd to
start W remw wrver whca a Connection is made to that

in cases v here Iwtd is not available, as is the cuse for
COOVCXRTS~ fhen a Remote D~mon must be imple-

mented whi~ takea ha pk The remote dnemon simply
lislens ou a SPCMC port (ConvexRTS/rtk dots support
TCP connections) and spawns the remomserver when a

Figuro 1. Flarrmte Debugging Envlronrnant
. ..— —

2of30 CXdb: Tho ROd to Romoto Debugging

Tho Romota Ddmgging Protocol

—.

The Remote Protocol used by CXdb to communicatekith
the remote server does not placeanyrestrictionsonthe
actualconnectionotherthanittransmitdatareliablyandin
order. Thus any transpat Iayex coldd be use4 given sut3-
cient support to make the link reliable. ‘M protoml does
assume that the transport layer may place restrictions on
maximum packet length. How physical packet length
nzstrictionsare handled isdiscussedin section 3.3, “Muhi-
Packet Messages”.

When the remote server is started CXdb Miate3 a contlg-
lM8tiOtldialog with the SCrVertO Wify &it tky ~ COm-
patible. If the local and remote sidesare rmmpatibk, then a

debugging dialog is started. When the local client is tin-
ished it terminates the connection to the remote semen See
section 3.0, ‘me RemoteDebugging Protocol”, for more
details.

‘Ilere is a considerable amount of softwarenuhhhxy that
mustbe put in place m fully pnxess the remote protocol.
Much of this code can be generated front a descriptionof
& prOtOCO].A SUiCSOf Code&IWatiOn @h& COkCtiVCly
called the Message Interface Generator (MIG), were
developed to pruvide an automated mechanism for pro-
ducing this source code. See section 40, ‘%e Message
Interke Generator”, for more details.

The majority of the software components within CXdb
have no concept of a remote process,The process kMerface
provides a consistent interface for local and remote pro-
cesses. An overview of the internal architcxture that pr-

ovidesthis uniform interface is provided in section 5.0,
‘The Process Interface.”

‘IIM remote server is responsible for all of the actual con.

ml of the wgel process. 1! provides a protocol based
mteffacc for qnxating on he target. “Ilc server also pro-
vides rudimentary file services to provide CXdb with
ticcess 10 files on lhc rcmo!e host. “rhi~ mechanism
removes any mquiremcnt thm the remote and local hosts

~hurc file systems. See section 6.0. “’~ R~ote Servef’t
t’or more dctds,

3.0 The Ramoto Debugging Protocol———-----——..-...-—-———-—-,—————.—

‘Illc Remote 1)ehugglng Prx)tocol (R1)P) is 8 protocol dCti.

Ilttion that provides the mechanism for cooperation

trctwccn the (‘Xdh clwnt and the remote debugg)ng server.

Thisprotocolalsoprovides a level of arci?itectureindepen-
dence. The protocol defines the operations allowed on J
target prmxi% not how they are implemented. Tbe remote
server is free to implement the operations io any form
required by, or accqtable to, the remote best architecture.

The sections below describe the physical protocol packet
layout and the pnXocOlcommmds currently defined.

3.1 RDP Pdrst Layout

Each RDP packet coasists of a tied format header and a
V13SiSt)k format body. F@re 2 showsthe klyOUtof w. RDP
packet. The individual packet componentsare described m
the Sectieasbelow.

Figuro 2. RDP P=kot byout
—

* I

Pdut,wdar
,,0‘,,

,4
~ -——”--------,

‘!
+

IypsGqpry OpcOd, mmIAns.1Path ha.,. >..

o 1 2 4 78 n

bytcofba

3.1.1 ~

‘lWrc are two types of RDP packets: Commands and
Replies. Not all command packets require a rcpl y, In im
effort to simplify the de /elopment of the protocol han-
dling, we deckled to w a strict command-reply model in
the protocol. IM CXdb clientwill never send a commuml
until the reply for the previous Comrniind has btcn
received’, WItb this pradigm in place, reply packm sim-
ply contain the ~d GlfC80ry ~d OpC{)deinstcid ()[il
more complicated mechanism for matching a reply [o a
command !wc.h as sequencenumbering).

Not all commarrda originate on the client side of the c(m-

necaon. ‘IWe are command!! which are sentby the rcnio[c

server (the P-STATECHANGI; command for W]~xiln)-
pk), Tlese Commandaappear 10tbc (~Xdhclirnt m 014(-(J/

bad packets !Mee thy may be sent a..ynchronously with

respect to client commands. Any out-ol-h~li]d” p:lckct\

cxdb: Tho Road to Rornoto thbugglng
3 of 30

{(}/

T)t. R.rnot. Lhbugglnfi Protocol

received while waiting fcu a reply are pmcased normally,
but do not intmupt the wait for the reply,

3.1.2 category
The Remote Debugging Protocol is broken into three 3.1,3

maim categuies of operations. AII of the opmdons avail- wh

detaching a remote process. Access to

V memory, qisters, attributes, and

ca~gory contains a set of specific commands, or
abie withiu the prot&ol could lwe been-h.tmped into a -2. Tbe specific mmmands ‘wilJ be detailed in the

single long lis~ but we felt that orgtmizittg the operations C@WS discussing=h majca catqa’y.
mto conceptual categories simplified the task of docu-

menting tbe protocul as well as making it easiel to *. In the scaions that Mow, specific protocol commands
will bercferwtccd us@theti Aettrxofthe categorYand

We added tbe cat+rxy field to the physical pdtct tayout the opcode name. For example, the CONFIG command
to increase the modularity of the code that performs the from the CONNECT category will be referenced as

packet dispatch operations, The three defined categories C.CONFIG.

are:

CONNECT

FILE

PROCESS

3.1.4 m Length
Messages controlling the remote

The data length field contains the Iengtb in bytes of the
connection and com!igtxation. his

Subaeqrmt Ixmmand
incl~ ~m i.UitiAti~ VCfSiOfl

or reply data It does not include tbc
Iengt.k of& packet header. A length of zero is a valid

arbitratim, configuration control (such as
debug criabling), and session timtim.

length; some packets contain no additional data. For
example,be C.?? %’JNME coaunarx.containsno oata

Messages cootmlling wcess to tiles on the fields.
remote host. This includes opening,
reading, writing, and closing remote files. 3,1 .S Poekot Ma

Messages providing accessto and control
‘he Ieqph and faznat of thenxnaindcr of the RDP packet
is specific to the individual cunmand or reply, I%e section

of the remote process image. Tbia on tach cunmand will detail the fcmnat of the packet data
includes cxrming, attaching, and for that command. If a given command requires a reply,

Figuro 3. REPLY Racket Fornmta
.—

Succem REPLY packt

PacketHeader
Failure (kale
0-Sulxeaa OptimalReplyData......

() 78 10 n

Failure REPLY packet
v t

PAckMHeader
FailureCode

.k

,~nortical
IS0. F~IUIW r Optional Errorstring...

(’
1) 78 lo— 11 12 n

,—. ——

2, ‘hetmm opco4 d LY.JmrmundwillbcUed lnkKhMlgca~~lY
withinIbisdocumant.

4of M Cxdb: Tho Rod to Romoto Debugging

!(1}4

The Romoto mugging Protocoi

then the section describing that command will also detail
the format of the packet data for the expected reply,

Reply packets have a standardized partial format for the
packet data. See the section tit.ied “REPLY Packet For-

mats” fcfmoredetails.

3.2 REPLY Packet Formals

There are two forms of a reply packet successand fail-
ure. Reply packets have a header identical to command

packets. The first byte of the packet duta is always used
as a success indicator. For a success packet the remainder
of the packet data is specific to each reply. For failure
packets the format of the packet data is common for all
command replies. Figure 3 shows the structure of both
repiy packets.

3.3 Murtwackot MeSsago8

flue to potential Iimic on physical packet size, the packet
data for a command or a reply may .aot fit in a singie
physical packet. To handle this condition a mulri-packef
message is used to transmit the data. The packet data wiii
be spread across mult.ipie physical packets. A flag word
in the packet data indicates when the last packet has been
transmitted, U is the responsibility of the recipient to
assembie ail tie data transmitted, If the message being
received requires a repiy, the repiy will not be sent until
ail the data has been collected and pmoessed.

A given protocol implementation will define a maximum
packet size that is appropriate for the physical media being
used, The protocoi requires that the C_CONFIG packet
will 61 in a singie physical ptxket. This is required so that
the debugger cilent and the server can arbitrate the maxi-
mum pucket size.

‘l”he following iist contains the commands and repiics
thl we currently implemented as muiti-packet messages.

“ F_RFAD repiy

c l:_ WIUTi? command

● P-S~lFNV cmn.martd

. p_(‘i?IIA’11{command

● P_’i’lll)INQ repiy

● f’_wwmm repiy

● l). WRRIX;SFT command

● P_REIu9I’e#y

● P_WluTEcommand

● P_STDIIWXTA ~

● P.STDOUTDNA ~

● P_STDERRDATA ccsnmand

3.4 Ba8k Ma ~pa

There are several basic data types that arc used in
describing the packet data formats for commands and
replies. Table 1 shows the standard data types used
within RDP nackets.

Each field witbin a protocol packet is assigned a basic
type. This type allows the MIG to properly genexate code
to extract and manipulate the field data in a type crinsistent
fashion. See section 4.2.3.4, “Sender Actions”, for a
description of how each basic protocoi type is mSpped
onto a specific C or C++ language type.

3.5 P8ckot cat8gOrios
As described above, the protocol commands are grouped
into three categories. Each of the categories is brittly
described in b foilowing sections. Pleaserefer to Appen-
dix A for a complete listing of the commands within each
category.

3.S.1 CONNECT -mnmncls

The CONNIXY commands are used to initiate a session
with a remote server, arbitrate configurations, wt-o(-

band control, and terminating a remote session A
desdption of the C-CONFK3 and (;_TERMtNPWE pack-
ets are given beiow,

C_CONFIG The C_CONFIG command is the hrst
packet sent to the remote server after W
low ievei connection (i.e. TCP/IP) has
been established This command informs
the remote wxver of the iocai ciients
protocoi version and archiwxure. ‘Ilc
remote set-v+ verities that it can work
properly wim the iocat clicn[and then
repiics with a me..sagc that i[)dicii(cs its
architecture, protocoi version, ma% pwkct
size, and an indication of cx)mpatlbdily It

is the remote servers Imk to decide I: tl)c

protocoi versiuns are compatlhle.

CXdb: TIIO Road to Romoto DobugOing 5of30

!()()

The Romoto Ddugglng Protocol

Type I Size

int I 1,2,4,(x8

bookall I 1

sting variable

T

Zkble 1: Basdc Dam ‘&pes
T

Name Description

bte~er dam Numberof bytesdetermiM precision.UnlessOtbm-
Wisestatedint’sm unsigned.

BoolemVdUC: O=FU 1 = Tu

htcg@ (W dove) WbOSCvtduc is a ~ enumeauion.Legaf val.
lEs@lbelisted forc4ich uaeoftbistype.

Wiablc kngtb sttiag emmding. Fomnat is:
2 bytes = L&@ of string, exeludiq NULL byte

I
STRLEN
STRING Obytes =NuLLKmiMted atrillg I

Variablelength data buffer.Fesmat is:
NBYTES 8M= =Lengtbofdata
BYTES nby$es =mwdatabytea

C.TERMINATE
Terminate the connection between the
loud client and Uieremote server. T&
remote server sboukl release any
re.sourcesit bas xquired on bchalfof this
connection and then exit. If the remote
server is controlling an executing proms,
then processshould either be killed (if it

was ercaud) or deracbed (if it was

at!ached). Tbefe is no data associated with

this command.

3.5.2 FM Commands

‘Ile FIU commands are used to access tbc file system on

Lheremote host. Commands within Uris Category ptw:de
open, seek read, write, and close access to files on the

r(wote host. This al!ows @e local dcbuggc# to have ace-w
to rcrnote executable and COIVfiles without mquhing some
kind of rcrnote disk mounting. A description of the
[:.()PEN and F_READ packets are given below.

F_ OPkiN Reql ws the remote server to open a
specified file for furt.bel processing. Tbe
open mode (i.e read, redkrite, or write)
will also be specified.

‘l’hereply to the F_OPEN command W~

*Y @e tile handle (like a file
descriptor) for use in later commands
mfereneing h tile.

FJIEAD Requests * remotesewer to reada
spedfied amountof datafroma given file,
lle read begins at the current file
positioa. lle current ale position is
updated by tbe number of bytes read.

“he r;ply, which is a multi-packet
messsgc, contains the data requested.

3.5.3 PROCESSCommwido

Tbc PROCESS mmmands are used to accessand control
tbe targc4processm the remote system. ‘he general types
of operations are:

1. Recess creation (~ kill, attach, d2tltCh)

2. Access and control of processathibutes and limits

3. Roecss execution control (stop, single step.
continue)

4. Access and control of process register sets

5. Access to proczss memory

6, setting eventpoints (breakpoints, wa[chwln~)

60(30 CXdb: The Flomi to Romoto Oebugglng

Ii)

The Mseeage Interface Generator

A description of the P.SETEXEC, P_CREATE, and
P.STATECJ-MNGEfrackts ase@3ti bCbW.

P_SEXEXEC Specifics the path name of tbe executable

P_cREATE

to manipulate. ‘IMs must be spc@ed
before a subsequentP_CREATE
command can be issued. It is the
responsibtity of the remote scnrer to
verify thatthetlle cxXcanbawease4
and is a valid executable.

Creatcaprocus lYomtheexecutable
speciiied ina previous P_SETEXEC
commrmd. ‘I%e qurnents to supply the

p==ms-af=ofm
command. It is the responsibility of the
server to perform wildcard CXfMUMiOlland
l/0 redirection based on the argumentlist.

P_STATECHA.NGE
TMs meaeage k initiated by Use remote
server. When the server scads this
messageit indicatesthatthetargetgxoccss
has changed state (i.e. stopped) for some
reason. The local client should send
P_PRGCfNQ and P_THDfNQcommmds
todctermine tbencwstate of theproCcss.

There are four commands which call for a little more dis-
cussion: C_ER.RC’R, P_STATECHANGE. PSflXXJT-
DATA, and P_STDERRDATA. Typically commands
originate with the load debug client. Howcvet wio -
four commands, they arc generated by the remote server.
ThCy UUly he generated iiSySIChfOOOU~Yto SDY COIWIIWSd

sent by the local client. As described previously. *Y ~

handled as owof-bund measagcs.

4.0 The Messago Intorfacc Genomtor_— __..

Much oftbesource code needed to manage the remote

protocol packets is automatically generated based on a
protocol definition. The Message Interface Generator
(MIG) is an aulomati code generation system that was
deslgnd with the following goats in mind:

1, Decrease the time required to develop the protocol
support modules.

2, Increase the maintainabilityof thepotocol sum
modules.

3. Support development of servers in eitherC orC++.

4. SupportOurautomatedtestingtkcilitiesalreadyinuse
on Cxdb.

To achieve these goals, the following features were
designed into the MIG

1. GmeraWn‘ oftcst drivers for w in autmnated testing.

2. Genu’adoa of sending fmdons that construct an
scud pr@OcOlpacketa.

3. @wratUm“ of receiving fimctions thatbreakapar
promccdpackets.

The developsnmt and use of the MIG met all of the goals
we had initially set forth. See section 4.3, “MIG Usage
Exprience” for more detaih.

The generation of t.bcsesource modules by the MIG is
controlled by a protocol definition and a driver speci6ca-
tion. The MIf2 can gcaexatc source modules in citha C or
C++. ‘l’he fosmatof these control files is presented in the
following becdonso

4.1 l’tw Protocol Mlnltlon

CXdb and tbc remote server communicate via a well
definrd -18S WM deSCt’ibedf.WCViOUS]y.~C ~tOCOl
detlnition file describes this protocol in a mdine pmess-
able manner. Tbc MIG tools make use of this description
for two purposcc

1, Gmerat@ an include file which contains rnanifcst
cunstanu that describe tbc protocol. This file is called
proto_krip.h.

2. Generating source ❑odules which automatically
handle operations on the protocol packets,

‘m MIGgenerntes the file prob-d~rlp.h (OC~n~Ml;~
SC*S Of #&tltl&l eaummts thllt S@fy UWf)fot(k.d of~il-
nization, packet layou~ and field $tructurcs. “IIIc rcwms
f~ g~frltil18 thin file ~:

1. This allows the code generated by the MKi to
referemcetbcsc symbolic names and, thus, be more
human madablc, Ilis wiil m.akcthe romp-up time for

CXdb: Tho Road to Remote -ugg6ng 7 of 30

!11

Tha Maauga Intorfaca Gsmomtor

a new developer trying to Urtdcrsmd the ~tocol
operation much shoctcr.

2. It provides a basis for Writina
routines by hat@ ifnccc =’-’-”

Wtthin each packet typ& multiplepacket~gortea rn be
Mined and within each catcgmy, any number of packets
can be defined. For a of impkmertu the MIG took
currently usc the list of categories and packets defined
within tbc !lrst type to be the canonical litK SUbacquent

type dctinitions may not dcflne new ~gaica or packets
within catqorics.

4.1,1 Major Protocol Sactlono

The protocol definition is composed of scveml major sec-
tions:

nwns

version

packet sIxa

code sets

packet types

The rlame of thepWocOl

The version number of the protocol

dctlnition

l%emaximum sizeofapromcol~

Definition of mnemonk (X&S that W~ &
Used to defined -t field V8hICS

Dctinition of the actual pcketa thai
comprisecacb packet type

The protocol definition is composed of ● series of key
words and parameters. Keywords are case insensitive.
Complex keyword entries will be described b individual
sections below. The high level structureof the pmocol
definition file is shown in figure 4, Keywords sweshown in
bold filcc

The simple definition entries, name, version, and
packet size, are described below. The complex
entries,codes set definitions and packet type dcfi-
nitions, am’covered in subsequent sections.

l%~tocolfhne
Tlw MIGtools generatea seriesof
#define’s that describe the packet layouts.
The protocol name is used as a prcflx for
all thtx! names. This name should be

) ‘l’heDA LOhunt-a)desum proloooluApuletioo IwtAr-
WMplanned for, but never wtumlly onedtd m M (~Xdb sys@n.

Flgum 4. High Laval IJrctocol Datinltion Structuro

PROTOCOL ~

VERSION: <->

MAX-PACKET a-

START-CODE-SETS:
cmic set dejlniibrm
END-CODE_SEPS:

ST_._TYPE:
<#et type drjirritiuns>
END-TYPE

END-PROTOCOL

v

abort and mcanin~ful.Forexample,ttte
pLotOcolMule used forCxdb’sremote
debuggingprotocolis RDP.

Prmtocd Versba
Ilu-1 vcrsiat number is meant to
be usedby clicntherwr pairs to verify that
they can communicate properly. It is up to
the appliaticms tomakc useof this value.
11.teMIG tools do nothing more than
provide ● #dedne nmne by which to
reference it Ilw #dctlnc name is
utamo-PRO’IOCOL,. VERS1ON . For
example, the #define name for the RDP
-1 ~
RDP_PR070C01..W53?SION

Maximum Pocket Slxa
‘!%1sspecifics themaximumpacketsize
thattheMIGtools will generate When
spwifyins the RDP protocol, wc deiincd
ti COrtCCf)tOf mulf.bpackcts. ‘rhCSC
packets contain a single logical memage,
but due to@ ysical constraints (meh
transport, etc.) are hrokcn imo multiple
pbyskat packets.

4.1.2 brie W Odhdtlone

Many of the data tklds within tbc packets supported by
the RDP csn only have ● spocillc set of values thnl w best

80130 Cxdb: Tha Road to Romoto Dohugglng

I ,)

Tho Mae8aga Intorfaco Garmra?or

detbfxt via a set of Mfuxntic namea(like anenuuwradon
in C). A specific set of mnemonic vahc.a is called a Code
Set.

Whenthe MIGtoolspmms acodeaeLacareapdh~
group of #delined constantsam CTeatcdUs@ b psotocol
name, the code set name, and the specific mnemonic

mc.hcqkofatiutk&~nti~fia
in the F_OPEN packet. It can have one of three specidc
values: RDONLY, -$1/RoNLY, and RDWR.

l%e format of a code set definition ia shown below.

St ●rt_eodas I <name> <cdnnren t >

mnemonic 1
mnemonic 2
. . .

●nd_codas:

Tbc code set de!lnitkrnfm theopen mode example above
is shown bebw,

start_codes: OMODE File open modes
RI)(3NLY
WRONLY
RDWR

end_codes :

The corresponding generated output in the proto.-dc-$ciip.h
file is shown below.

/* File open m~des “/
#define RDP_OMOC)E_RDONLY 1
#de f i no RI) P_OMOl)E_WRONLY 2
#definn RDP_OMODE_RtX/R 3

4,1.3 Packat ~po Deflnltlorm

‘Ile current RDP defines two major types of protocol

packets: command and reply, In order to provide possible
cx[ensions in the future, tbc protocol definition language
illloWSfor an arbitnssynumb of packmttypes.

Recall that the RDP cmnshtsof two major typa command
aml rcply, each IxnJ@ninto three catcgoricq H3NNE(TI’,
I’11.r, and PROCESS, which arc in turn broken into a
series of commands. ‘llc type definition syntax parallels
dus hierarchy; opcodc dcthsithms am nested within cate-

gory definitions which nrc nested within type dctinltlorm

‘[he format 0(a packet type dcfinltkrn Is shown below, ful-
Iowd by an exmnple.

start_ type: <name> aabbrem <prefim
start_category:
st. art_opcode:
end_opcode:
. . .
end_category:
. . .

end_type:

Exampk:

start_type: COMMANDCMD CFLD
...

end_typa:

‘W parameterstothestasltypecntq are defined below.

●bbrev

fkld pP@tiX

Thenansa parameter isusedtocrcatc
comments within tiMproto_descrip.h file
as well a9 ● aeriea of #define constants,
one per pcket type. From the example
above, the constant for ~ COMMAND
would be RDP_PACKET_CO?vfMAND.

Aa stated above, the packets defined
within tbo &at type entry form the
canooical list, The ●bbrev parameter is
used in the construction of a constant
name for each pocket, An example, using

the FILE OPEN packe4 is
RDP.CMD-F_CNTIN, The ‘F’ comes
from the packet ~tegory and is descrsbed
below.

Defined constants are gencmtcd that
describe all of the fields in the pncket.~
defined. Since the field layout of
corresponding packets in different types
will Wfcr, tbc field prefix pamnwtcr is
used in the #define name to differcntitile
dehh that might have common nnmcs, An
example Is
W}P_(.YLD_F-OPllN_M()1JI1...’WPI:.

‘Ibccatcg(myd tictd&tlnitions arc dewmibcdin the f(d-
Iowillg SCctkm.

4,1.4 Packat C~rY f)al!nltbns

Within each packet type multiple ctitcgorics cun IN-
defined, The cumnt !U)P defines thmc crucgorics: t 7)N -
NIXYI, l:ll.l{, and PR{XI{SS. ‘he rm(cgorv entry is uwd

CXdb: Tho Road to Rornoto DebtIgglnfl Q of 30

{1!

mmM@eeafp Interke Gmemtor

to define thew aegorka. The synw d tha utagcry entry
isshown bebw, followed by ~ exmpk.

start-category: <name> cprefln

start_opcoda:
end_opcode:
.,.

●nd_categoLy:

Example:

start_category: FILE F
...

erld-category :

l-heparametersoftheSt811cmws’y enlty are defkwd
below.

name nle Mmefmmtsleterisusodtoa?ate
comnwnu within b ~_&sutp.b IUe
aswellascmnstmma lep~
catctcuy. FromM cxmt@e S!X3VGthe
Comlmn f- cate~ m would b
R.DP-CA’fEOORY_FILE.

prefix lle pre9x parameteris wd in Lbe
coasulJct&mof Calstmt ~ flw*
pocket Mhedwtd all oftbc fields Wined
whhln piiwkets. For exampk,
RDP.CMD_F-OPEN and
RDP-CFLD-F-OPEN_MODE_TYPE.

4.1.5 Pdot Flokl Detlnltlona

Witim exh categcwy,the packets thu falJwithin thxl CUC-
gmy xm defined. lbc &tlnition of- ~ abocai~
iulopcx contains thcnsmeandtypofti Ikldhslhe
pucket. The synmx of the field &fldtJtm anfry is shown
brh)w, fOkWOd by m e-~,

fits r t _opcorle : znmnez

flllld: ~rtdme> <type> I <code sat > I

,.

I rQ!i Pt_mff!; @t , I

I I nr 1Ufjm :
. Incllmje Lnxt s

er)ri_lnclLltlc : I

Prl[i .Upcclfie :

I .Mnlplr

etart_opcode: OPEN
field: t40DE -4byte OMODE
field: FILE string

anti-opcod.:

lbmsw~mtwntisu sedkngeaerahcn xmedcoslsmnts
Uut klcntlfy the packetand constants thatdescribe tie
fields within die packet. UsinS the example above,
RDP-CMD-F-OPEN d RDP-CFLD_F-OPEN-MO-
IWIYPE.

lleru are threeentry types within an opcode dcllnition:
fidd, --o#fae& and 1A*. M of these entries is
-M Mowm

4.1.6 FIELDEntry

-h field entry Wines a sin@o Md within h mnnnl

~ lb ~yOt81Of th6 ~ @ltt’y is ShOWObebw, fok
bwd by m exmnpk.

field: <nam> CCype> [acode set>]

Exalnpb

field: MODE _4byto OMODE

-m pemmetcr ‘a ti mld enlly are Mllal mm.

4. f.o.l MnM

~~ofti Md. MwlU&tihgentingti
Meflnc comtxnts which dcscrib: the field. Exh field is
descdbcd by one m three maslans dqmting on IIM field
Iypc. Sa Ux ~ ~ below for mm Malls,

4,1.9.2 ~

‘llte type of the field. As described earlier, each field
dbh*~Ihd~s~lw,’~MIGuhh
1~ infosmaticmm #amMo de whkh - ~IfJIHlyham
de thefieldVXhM.W m 10suppmud field I)qxs:

- lbyte [byte inlqral field -lbyte_s fordgncd

_2byto 2 byte inte$ral field _2b~_s fur signed

.4byta 4 h~ inlqral tield, ..4byt0.,# [~ ~ig~d

.Hbyta Ii byte integral flcl~ -~bY~_~ f~~ ~lg~d

strlq 4 byte in~ger len#LII follnwcd hy NI II.1,
tczminaud chamctcr string

buffer Ii byte len@.hfollowed by mw hhuuy dnln

100430 CXc#x The Road to Renmte Debugging

The ~ IntadmceGanamtor

l%ctypeoftk neldisu9cd to&&nnlae Ksxlzeaodfbc
typeofvcdabkst batwulbeuclcdm WIYkwkhkavalw
withlntk@lWra&doollk.7TleMloambgcmc’Me Adea
of Mdlne ccmafantsto deacrib tk Ckld contenfs, If the
typisoneof Ibehttegral value& tbeltbanutanrsm’e
generatml: offacL kttgth and typ, If tlw type ix sldns -
buffer, then lldy m OffCClcaUtmNiacluted 9kDcetkch#
is vadabkm

An example of tbe constanta created, @en from the
MODE IWloftheOPEN~ hahmmbekWV.

#da fine ROP-CFLD_F-OPEN_ptODE_OFFO
tide t 1no l?DP-CFLD_F-OpEN~DE_LEN 4

Ode f 1no RDP-CFLD-F-OPEN_MDE_TYPE _4byta

/“ Use RDP_fMODE_.., coden ‘/

The comment Is automthll yaddcdby WMIGtcmls!o

make the include l!lk mm rcdable. Any tlmc ● llcld ref-

ercncca ace&act tbenatneofthcodc aetlaacbdaaa
coauncnl in Ibe paatcd proto_de#sip.b M

4.1.0.3 coda U

This optional en~ k used to indhxte whkb Go& sc~ If
any, be fields value will bc taken from. Thk Infamatkn
is only used by the MIG for gencrathtg test dtivera Ihal
need to comstructpackcta wkb valid - with tbm. ‘llw
name spccillcd must be a previously dcflncd oxk W

4.1,7 RESET.OFFSE1 Entry

As each field entry k procesacd ha OffSCthnn the tqbt-
ning of the packet Is uudnla.lned by tbc MIG tools. llte
reset.dfaet cntfy resets tbe oment Offut to O. ‘lIds fca-
MC canIXused for cfudng v-t recada. An exwnpk
used for handllng archilcclurc variationsof W ●ttach
puckett is shown hclow,

:;Ldl t,_opcode : ATTACN

i IIC Iude :

/ ● (JonvexOS :Jpeci f tc ‘/

~~rl(l_.i nc lude :

fi-ld: PID _.4byt. e

r e: Iel_,.,,orr:Ie L :

i Ilr- I U(lr) :

/ “ cOnV~mrs/1 Lk !ipaciflC ‘/
(*1)[1...Inc Iude :
ri~l{l: Al,llNAM~ ‘:(1 Inq

fint! opcm!e :-.

4.1.S INCLUDEEntry
The lmlda cmy b d to add output to the generated

w-~.h *. ~ I@tbd lCXti.8Pkd &t the OUl-
putnlchl~witb theneldsdetlm?d fortbkpackcL
An example, uacd for adding cunmenta to tic THDINQ

@Yxh-m.

start_opcoda I THDINQ

Ci@ld: TOTLEN _13byte
field: LAST _4byte
field: ~HDS _4byta
includo:
/’ Rarrulning fields repeat per
thr.ad. Offsets are relative to
thr.ad entry.●/
end_includei
reset-of fsot:
field: T1l) _4byte
field: STATE _4byte TSTATE
field: SIGNAL _4byte
field: SUBCOI)E _4byte
includoi
/“ TNAMEfield only oxia?:s for
ConvexRTS/rtk architecture ‘/
end_include:
field: TNAJ4Estring

and_opcode:

43 Dflvor Spdmlona
The MI(3 took provide ● mccbankm for aummallcally

scnerating code which caa manage the packets for UIC
ckflncd protocol. Thc MKi can prnducc hNIr dlffcrcnt
kinds of SOurccnwluks: generators, dumfw% sender%
ad rcdvera.

The four types of ddveraarcalso hrokcn down inm IWIt

major catqwics: scndcm (gcncratom and senders) Im(l
reccivcru (dumptm and receivers), The terminology is II

hi[awkwmvl IXICthm”show II evolved.

A gcncraturis ● self contalncd program whlc h ~cncrlltr~
one of CVCIYkindof packetdefinedwithinthePI’IXIK-O1A
dunqm b ● self tmntalncd p~ram which dumps the rim ~
temrnof every pckct thst h receives, ‘Ihc ~cncrrlt~mml

dumpcf modules Io$cth?r f(mn the hash ft)r the mIumuIWIl

tcm[lng of the runote pn)uml end Ml(i [Imdx.

CXdb: Tho flood to Renmto Debugging 11 Ofm

‘1’1

I rw maaanga lntod~ Gmmr9tor

UIC that rcceivca a packet and ka’caksit ~ fw further
processing.

Thcgawatkmofadrivcriamm’o lldbyativers pecifl -
cation lang~e. Tlw operatbtt of lhe MI(3 tcmlsand the
syrwaxoptions of the Iansuage depends on the typo of
driver bclng -. m syntax d the diver spdilcadcm
Ian@age la dcsaiw in b aecdau M.

4.2.1 Major &#orM

The driver specification Iquage la twoken into two
major sections: wlup and pack#l hmdl&t8. Tbo aelup
seclion indlcatea which type of driver is beint created
and other options ●bout lhe generation process. ‘Ile
packet handling secdcmdctcrrnhw whti ~kcts will be
handled by the driver and exactly how hone selected
packets will be handled. Each of these scclions is
described below.

4.2.2 =Up ~

Tbc setup scctim tclla IJM MI~ apedllc infoanadcm that
wiU control the ov~ pma8 d -S lb divu nmd-
Ulc. It consistsof Ilw fouowh~ altlka (name 0# which m
optional as indkatod)o

rnm19 7?IIs mum be tie Ilrat non ~t altq
ht the driver sprcikatiun, The MKI tcmls
wdl skipallcntrb~m the apccificatlnn
until h thin the khlal mate enq, lltls
entry selects W t~ of ddvcr bcint
Crcamd.

name pattern ‘[his entry defines the pattern which is
u.scd when conslructint ~enerald

function names. S@al cbuactcm allow

(ur the hwlunkm of * Catctory pmtlx and
opcode name to hc included in the

gcnrrrecl name. ‘Ild LMmdt patum is
<drivtr..~pe > .<cu(e#o~_<vpcode,

(optional)

lndlcaus Llm no failure rqdy functkm
should bc gcncratcd ‘Ilit Is nccmary
when multiple driver qmchatkma arc

lwing u~cd 10 ctmstruct one driver,

(Upthmal)

the rollt)whlfi text Is LWph?du) the

4Z.3 P=kat Handllng -bn

Followiq LbeMIUpaectba, the packet handling scct,loa
deacribea how -h ~et in to be handled. ‘he fmnw
of thla aectAooClmely raemblea the ~ket type de6111-
Lionaaxion of the ~ Unnldm lart8ua@.m m-
tions below describe how to select specific types,
catcgorbs, and -w and how to specify the haadllng
for ● l@.llc ~

43.3.1 ~ d ~ ~

A ch’ivera@flcaUon mustsebct b pdcla h will han-
dle.711esynlaxfffarJeUhlgpackcttypeadcau@csu
dmllar to the syntax used in h Rotocol Dcflnhkmlan-
guate. For example, a driver specillcatlon that selects
psckcla witkdn * CXNulMAND t~ and all the caugodes
h pccscntcdtwbw.

s~art.typa: COtIWAND
start_ categc3ry: CONNE~
.0.
end_cat. agory:

start-category: FILE
. . .
end-cat agory:

st. art_catogory : PROCESS
,,.
and .catogory:

and,. type:

Any packet t~s (w cAIM@e.s within a type thuI IUC rrm
sclec.lrd will nut b p-and hy the ~cmtcd driver,

4~,3.2 Pdtd Oaldbn

Within each category, b packcu 10 hmhmuJhl musl I*
wlctti, Packcu m Aecnal using a syntax mmilnr tlI Ihr

l%m~td lkfinlthm Isnpae. A start. OPC~~O entry is

u.wd to ,wlcct mp~ka and an ●d.,opcodo entry is used

tu tcmdnute the spu+flcat.hm fnr n dccmd pxckct.

[he cxtcmdon, mqwcd tn the Pnmrol 1]tntmhlll IIUI

$USRC,has been added h) snnpli[y Ihc n~ah~~mmu’ (d
standard drivers, ‘MI stsrl .qmmio entry will ut’rrpt IIn
qwidc 0[” ●ll .“. ‘Ihls Indk’atm thxt MII pnrkrls IM}I yrl

wkc-led whhin Ihc cumnt catqwy should h wlm’trd ml
have the dc(auh Mthm qqdkd ti} them.

120130 CXdI: Tho tloai to Romoto ~ohugglng

Uon fragment drown below sclecta the indlcatcd packe[
8td Wh * dCftit ~hlfj U3IL

start_opcode : STATECHNJCE

end_opcode :

lEc wWrms ava.llablc fm sender and rtx.wer drivers are
Ch4xhdlnttm ~ Mow.

43,9.4 ~ &thU

For all pKkeu Mlectod In &e driver specification, the
MICIWI gmmmmt fbctbn to hmdlc -h ~ke[The
6- fUOClid08 Of tht fUIKlb, bOWit h ca.lkd hOW II

processm each field, etc,, m dcwmhwd by the sruon
apecincadons mar,bfcutbupmck

thdeas ovmhklen by an titm spdlculcm, ch sender

furmkm pxluced will luve one argument for each field
ddnod fm tbe ~e~ The type 0(the qumnt will be
detcrmhod from tha typa of the field. Tbe field types
strl~ and bulfor produce two arsuments: one for the
Iert#tha ndamfcut hofmintutothedaLa lbctabbbdow
~ the kld type to lmg~e t~ tmnsht.icm

‘Thble2: Field ~ to Language VW
‘IhnaMlon

rField ~pc I Languttgc Type

I _lbyti3_, I Cilu

E=E=

CXdb: Th. Flood to Rmnolo Chbugglng 130130

II’

The Maaeaw lntotiace Gonemtor

●ga Ovefridca the default argumentlistf= w
#encratcd ftmctkm. -fM tynw is:

args(arg decl[, arg decl, . . . 1)

Cauadw Overrides fho generated name 04 the
flmcdal. This& generally Ud WherLfm
somerMaoQ youwMtafmtcMtt Mme
Iht (hsst’t fouow m a- ttam

-.- ‘%’ &avWb to ~
nattte~ esttry&aUiM *C may
beudinthespDciM tWBe. nteqmtax
is:

cal ledas <name>

gancrata This ia the *fault sctlat fm a &Mr of
lypegencmtor. ltisattetmto~thls
specikatioa m any othertypeof driv~,
Tbiamtioocauae abhmcskmganemcd
locuutruct thcfmketfkm asototvalid
ValueaM m mb aulectal ndd’a W.
ThCvaluoapkccd in fbepacketcanbe
overrid&a with h aabct andspactal
actions duulbd below.

$alact This actim is uaodto scloctspdic fields
for Procesahtg,lltls ~tkm may tm
spcdfled multlplc thnes to doct multlpk
rieids. If any salad xtion is qmCUledS
then only Ibcm dclds Iistcd & dad and
special Elions will bc ~m b

are two different syntaxes supporfd: -
fur senders and one fur gcntxatms, IIM
wnda syntax Is:

!:~]~~t (~rfo]~ name>)

‘Ille gencratur !4yntaxix

!;m]~~t-(<fi~~d fldlllOD,

●Value l>l, <Vnlue) .1)

l~(w scalar fields W VmluaI Rpcclncalk)n
isuacdas tbcvaluc tl)bc+plUx4hltllc
flchl If the nd~SCICCtC~Is t}fIYpdstrh~
or huffrr, then valuol specifics the Iag[h

null vmlua~ *pL Iiks lhc data flm Ihc tlcld

llIr ICXI Iprrillcd in Ihc values Is directly

coped inn) the gmernlcll sourlxl Cudc M)
tidcfinc u)nuaIIIs (u rxpmmtonn may hc

Uad. An exampleof two Kalarfieldsaod
a string*M In● genu’auMSpociilcaticm
arcslmwnblow.

celect (VERSION, 10)
select (HWARCH, RDP_HWARCH_C3)
6elect(USER, 5, “streepy”)

Noktlutoctly the WdsWectodwfflbc
placed lo& argummt Ust fa the
#esWaled futtctkm.

Spotdsl -fMaa&mi shMstdcal&syntaJclothc
dad ~ &aaibed above, However,
W Of thk - ~ 00t CXChKk fields
Uut m U apcdcully nmrnedoFor
example,uaPMkMllMloncldaandonc
lshatdinaapacial~ thenthatfleld
Wtu haw tk SfECial values MaociaM
Witbkatulti (nkttiactlcl dawillb
ghclt Mault value9.

4a.3m5 n~ Aut&na

For all selected packeta in a receiver apeciflcation, the
MIG will Benemte a function to handle that packet. The
MIG will also #onerate ● function which will break apart
the header of the ~ket and dispatch the packcl to the
prqm gen~akd handling Ibmxion.

By default, the pwrated packet handllng function will
exmt aU of tk Ilelda within the fMM into vtila of a
reasonable type, See ‘r~k 2 above fw the type corrcla-
dons. For dump drlvcrs, the contcnu of each held will
then he WNpul, For receiver drivers, there is no dcf~uh
action; one of dunq, call, or raweall must be speclflcd.
Ik aLlkMl8pcclfMlcms m dradlxxl Mow.

call “Mc actlcm will generate ● call to Lhe
specified functkm. only those ilelds thal
have Ixcn selected (by dcfaul~ or vin
xlccl or special actions) will hc includmt
as argumcnta 10 the call. ‘Ile synuu is:

Cil I I ●. flJtl C’t inn rtsma .

dump I hunp lhc c(mtcnta of the mcicctmlIIcklt m
lhc ITUSWC function (m spccillcd in IIIC
q pmmeter m lhc Crmta Cll”Xy). ‘Ihc

name of Ihc field and iLl Vlduc Will k

WJlpm.

140f 30 C%&: The fload to Romoto Debugging

Tho Meeaage Interface Generator

bmdle.fdl Spwilles that code should be genemtcd to
check the failure code in rhe packet and
fbenameof thefuoctiontoc.allifafailw
is detected.This is dy valid on REPLY
typepackets.The functionnmncdin tbe
wXionwillbepassedtotbe
_diepatchReplyFaU function (which is
generated by tbe MIGUOICWJme
no. falJ.reply entrywas used in thesetup
sectim)c The syntax is:

handle_fail <function>

rawcell l%is action ia identical to call execpt U@
the length of, and a pointer to the raw
Packet data we added !0theendof the
argument list of tbe function c.ak.d. The
syntax is:

rawcal 1 <function>

l%e lengthargument is of type
uns igned long long andthedata
pointerisof type char ●.

select This action is used to select specific fields
for processing. This actioa maybe
specified multiple times to select multiple
fields. Ifanyselectactionisspecified,
then only those fields listed in adect and
apacial actions will be pcesacd. There
arc two different syntaxea suppoti:

select (<field name>)

select (<field name>,
< varname>, <type>,
[z vdrname2>, < t ype~>])

l;or scahr fields only a single variable
name and type am allowed. For string and
buffer fleldx the first vartable name md
type arc for datt length and the second are
for tbe data pointer. ‘he specification
pmwides a medmnhm for overriding the
default variable name and type chosen for
d]c vtinblcs used to extract the field~
from the packet, ‘Ilis can be needed to
provide type codsfency ill the function
CXI1specified in the call action described
above An example of the two formaL%is
shown below.

q)ectal

select (VERSION)
select (CLTYPE, cltype, int)

select (USER, ulen, int,
unarne, char ●)

‘lldsactkmisidenticalin syntaxto the
select action described above, However,
use of this action doesnotexcludedelds
thatm not speciftcaflynamed.For
example, if a packethas 10tleldsandone
is listed in a specfal action,thenthatfield
will have the spedd vafues associated
with it and the other nine fields will he
given default values.

4.3 MIG li,age Expdonco

The development of tbe MI(3 tools proved to be a very
farge win for b &velopnent of CXdb’s remote capabili-
ties.Table3 provides datacomparingtbe relative amounts
of code generated vemus configuration table size.

lhble3: MIG Source Code Summary

[source Lines

MIG soum code - Pcrl (22% comments) 3320

ProtocolDefinition 663

I Driver Sclecificaths I 991/

Totaf 4974

(hmfCd SoulCecode 21341

As indicated by the table, roughly 5000 lines of sourceand
tables gcnemted 21000 lines of source code. Aside from
the 4X direct bcnef3L the overall maintainability of the

systcm has been gready enhanced. ‘Ihe main[cnanccof
protocol manipulation routines by hand is tcdmus :md
mm Pine, With tlM use of the MIG, modificationstothe

protocol require a change to the protocol definition und

rcgeneraflng the derived sources. ‘Itic chance for crw in
tlw mainfcrumce is virtuafly nil, awnning n cmrcct spccuii-
cation (03viously, the client and server will tmvc 11)I)r
modind to handle any m{xlifled prutocol values, but [Iw
maintenance of the protocwl handlers hnybeen removed).
I:or a complete example of the promcol dctlnitiorl ;II~d
driver specification see Appendix 11.

CXdb: The Road 10 Ramoto De@@ng lt50f30

Ii’)

TIM Romoto Bawor

5.0 llm RomotoSomor

The remote server provkkx all of the ~tual debug@ns
control of be ~et procrax. CXdb watrok tlm mivity of
the server with the Remote Debugging Protocol, The
server has absolutely m high-level u*rmaodins of *
process being &bugge@ it is redcted co ~-level

debugging.

TM ratioade fff excluding some-level iofauwkm from
Lbesmer is two-fold: -, reduce* complexity of the
remote server; and two, clcaoly scparau W tasks ~
fonncdby thescrvermd CXdb. Itiskqmrtuuio keqthc
server small and easy to porthplement. Thi# Ieds to
quicker development on new archiLccturet. lle second
ruson mods a lirlk ❑ om ex@x&ning.

Flgura S. Flornoto B,rvw Archktural Ovoti

IJolti DBX ad other STAB4-bMOd ckbuggers, CXdb

dcmsmnmaimamm iUxymWkinf Wmadcm Wkhio Ihc cxe-

cUldh.*~ h [SU’C91],m Uxa ● Su of wlx-
Iliuy dam nks W*MO the dcbag@ng &fmlnatlon,
Accculo- hbytmdlcxdb ddmremmcwrves
would~aw’bolaliudmdoo onthekbuggillg eovk’oo-
mcnt.The user would oitbr have to msimain duplicate
lib co aach mMMM, or provide some kind of remote
diskmmmtint. -~csnbcprobkmadc tothe
user.Tomkig@ctbaeprobhA onlycxdb Irulsuxcss
to IkcMa!Mu; tM~mlynds~ tothcexmmt-
xbk. Any infmndon dut CXdb ~ from the cxcat-
Wis-vodlmlngllwm cmnmamk of the RDR

4. STAB(SymbolTABb) infonnsdoa bclwbs osmo,type,d
Iocuionfa Vukbla d Kldm81 -M for mum-aItmemams

Dcudb

..
,u

I

Tmgm :

b:

Illdllklp ●
a

1- 4

Machlrw
tlm.lntiy

+PRtH.95amnands [

It

h

7
+Gmlrol Flow

+ ma Plow

EzKl
EzEl

.—- —

16 of 30 CM: Tha Rod to Ftorrtoto130tmgging

Th9 Ron’mtoS@ww

FlgtRc5prcscola agmpldcdovervkw aftbeolpMoa
oftbemaJor scrvcrcompoOcau. &h Ofthcmajordats
structures ti modules arc further described in me fol-
lowing Scctioas.

Sevcdmsjor dauobJeasm sbowniutbe diqra4spc-
cifical.ly: Rem-atDcctirm, lhrgednfedd%eu, and
GlobalFUcTable. ?lwac objects uc cksaibod in sccthm
5.1, “Majcx DaU-m

The server is esseodd.ly a protocol engi~. It is always
waiting foreitlEr astuccMa#e Witb&t the~c~
Oracmlmsnd mbomccivcd filmttbt uaotoclialt.’r’his
“waiting” is performed by tbe l/O Manager Module
(IOMM). See scctkm 5.2 “IC)IbfM”fcw~ &tdls.

Thescrva imxpmtwamdiummy iik~laorck
to implement the FILE commands required by tlw RDP.
Tkopcmkmapcrfcsmcd bythlsmrxhd cuckmhedio
section5.3, “FileIJO”,

AN of the actualcontrolof Uw-et prrwss is wotainul
within tie process lnmf~ (PI). The ChmvexOS remote
sever’s PI was derived directly from its equivalent in
CXdb (with aJl symbolic underaundha removed). See
section5.4, “Setver Pr’formaredetails.

5.1 Major Data Objoctm

As shown in F@I# 5, tbcrc- severalmxjordataobjocts
thlarcccntraJ:9 fhescmus opaadm. EhoftksedaU
ulqru,s ure briefly &dm4d kc,

RrmuteGmrtectiom
This object crtcan~ all aspects of the
ncw.wk couwxicm to tbc rcmolmclient. 11
p’ovws OpcrW&m to inkiallti W’

conrwctioo, mcmltfx the ccmrwxion for
traftlc(uscd byaelect o),andrced~
dispatch ~kets from the reumtc client
(ushtt the MIG generated functions),

‘lmg~tlnferlorprocas
“Ibis i%the object whlcb anhties the

kucess fnlmfam, All the OpCfSth’lS
descrihdIn the ‘“PI” wxhm arc provided
by this object.

Ftaum 6. WMM Praeuma Atoonthm

while lgetMai. nLcmpExi C ()

I m.
*

I

MOW SICCHLD
I

v

I

sELEcr
I

~
BlocksIGUfLD

I
v

I w~ /0 I

I ‘Ssh-t 1

CIabWlldlkbls
The saver malnmina a single table of
~n llles for processlq FILEcfiUgOq

RDPComrtuods.Tbc Opcratlons
dcsaiw Inme “File m’ sectionarc
providedby Ildsobject.

5.2 toMM

The IOMM module Is the central event dispatch sys[cm
for all of M remow sefier. F@re 6 shows tbc algorith-
mic control of the semcr’s main loop. The individuid
~&c Wtlined below.

1.

2.

Set up 411tk descriptors tit need to be mnnhorcd for
Mt.ivity, ‘1’’ldsincludca the wmcaion m the rcmolc

client and the Wdout and stdcrr of the uqct process,
Any xtivity on tbcsedcsuiptors will cmtsethe SCICUI

all to exit.

Allow Slciitllm Slglwls to lx dclivcrcdl “Ilc

The Procoao Intorfaeo

3. Perform a select call. The aervez will wait here until
some activity on the file deseriptara, or a SIGCHLD
(indicatinga target promM state change) oeeurs.

4, Block SIOCHLD.

5. Dispatch any targu poccas ~ that was detected on
it’s stdoutand atderr.This datais sent backto the
remoteclient to he displayedto tbeuser,

6. Read and dispatch any remote packcL This W~ call
MIG generated functions to do tbe actual packet
parsing amt diapa@.

5.3 Fib Uo

All tile I/0 performed on behalf of the remote client (due
to FILE category WmmalMh)~qedby&GWl-
IeTable. This data object maintains a set of OpenFllo
objects to handle ~h file. An Opod+’ila object pmvidca

method for the following operations: open, close, seek
rea~ and write. The GlobalFUaTabia pmvidcs methods
forallocatinganddealham“ g opaaFua Cntriem.

5.4 Sorvor PI

The Process Interface (Pi) within the remote server is
modeiled after t& PI witl@ UCdh. CXdb’s PI is deseribed
m section 6,0, “The Roeas Interface”. This section will
only discuss the differences between t& impkmenrations.

Scvwal PI components were removed as part of emUruct-
ing rhe server, they am:

1 Support for core tiles. This is handled dhetly by
(~Xdb using the file f/O operations UJppmd by the
server,

2 Support for remote images. Altbougb possible, it
dlcln’1 seem reasonable to suppoft multi-level remote
Ucccss

1 The brc,akpointtable, All breakpoints are managed by
(‘Xdb using remote rcadhvrite of theprocessaddress
space, ‘Ilis tmplementatiocr may be modified in the

(u(urc ~! d~ewcrhead of mging the breakpoints
rcmotel v becomes unacceptable.

4 Al I references to symholic debugging information,

N() debugging mfonnatiun beyond the machine ,ratc
IS nmn[mned by theserver.

6.0 The Prou3ss Interface

The Process Interface(PI) within CXdb is the point of
accessandcmnaol foraufmxesarelated informadon.lllis
includes:

1. Maintaining the proaw’ environment (environment
dafainitialwnrkingdirefmq,eunmandline
argumen& ete.).

2. Creadonofthe pfoccaa OrattacMng toanexisting

-,

3. Mana@ngtbebreakpointsphKWiby the UW and

created by CXdb to control process execution.

4. Aeceaato (@l -’S tllftChinCSMW:scahlr,VWtOr,

and COMOldCMiOO re@ers,

5. Handling of all signalareceivedby the targetprocess.

6. Aeeessto eaeh thred’s stack and memory.

lnordertohide the&tailaofac.assing aJJofthisproc.ess
infomatioQ several tn@or~ons Wae designed into
the PI. F@c 7 shows the high-kvel designof thePI.

Brief descriptionsof the impoxtantelements of the dia-
gramamgiven bebw.

inferiorProcua TM maintains the state of the target
proecssacross instanttations of a process
-c. For example, the infomumion that

is usedto initially crtxue t.bctarget process
is stored here,

prcdhnhol Access to theproms as a whole (such M
stopping,starting,etc.).

tbrasdControlAecxxa to individual thmd attributes

(fegiatem, memory,stack etc.).

ProcessInmgeAllmanipulation of Lheconnection to the
remote server is matuqpd within the
RemoteImage object. The RemoteImage
object is a derivation of the Pruccsshnage
base class that defines W standard
interface to a proetss image.

By using a standard be claM for all
smmssto images (be they exccutuhles,
cm files, or local or remote pmesses)$
the PI presents a common view of O
process image, “Ilis minimizes the impact
on the restof CXdb when the in[cml

Ieofw CXcAt:Th@ Rod to Romoto Debugging

Surnm,ry

Figuro 7, PI High-bvot Organization

Ima’utnd

n—+pointer

+ data use

x

l%ixxiq

Corehnage
I

Exechnage

Locaumage I
RerrtoteImage

—

representation of a process image is 3. Develop tbeCXdb process image modifications and
modified, as was daw when remote implementtbeConvexOSremoteserver.
irruqp were added.

4. Develop the RTK server (this was really done

With these abstmclions in piace, all tbc components of
concurrently with step 3).

Cx(jb can make rqucsts fcx cootd or iuformst.kM on the

targel process and k PI handles the activity regardlem of
Ihe location of tbe proms image.

7.0 Summary —.-

Ihe development of CXdb*s remote debugging capabdi-
ues mok roughly 1 person year (hrec developers for about
4 m(mt-hs) to complete, The devclo~~eat w s done in
hese general phases:

1 Ikfitie the Remo!e Debuflging I%Mocol.

2. l)evelop the MIG tools.

By fully defining the remote protocol and developing the
M;G toolsup front we saved valuable time during the

implementation of the CXdb and remote swer code. As
development progressed small oversights or misunder-

standingsin the RDPwould be uncovered. The M K;took
madethetaskofupdatingtbeprotocOlcodeawmp.

00ViOUSly, we hSN?OIIIY bcgu’11to kverage thc U.WfUhlCSS
of reclote debugging. There are several classesof Mug
operations that can benefit from this technology. Some of
them arc:

1. Kernel debugging. 13yembedding the remote server
within the Kernel, CXdb could be used to Wrf(mn
kernel debuggins on a remote machine. ‘Ilis would

CXdb: Tho Road to Romoto Dobugglng loclf 30

Acknowtodgrnonts

/-

2

3.

provide an improved debugging environment for
kernel developers.

Remote debug@ng over dial-in lines. ‘fbia would

etiable customer suppott ~1 to debug

processesrunning on a cuswnmra machine usiog only
a standard modem line. ‘Iltis would greatly enhance

toe level of support available to the customers.

Embedded systems. Any embeddd Systml which

can have a remoteserverbuiltintoit can benefitfrom
this technology(in tbe sameway as theReal-time
system).

A1l-in-alL the devebprmh of CXdb’s IW.Uotccapabilities
was a definite successand a step forward in both the func-

tionalityand the maintainability of the syatetn.

8.0 Acknowledgments

1would like to acknowledge my cdlcagucs who parW-

pated in the dcftnithn and development of CXdb’s remote

debugging capabilitic& in particular, G- Brooks, Rob

Gordon, David Lingie, Steve Simmons, Ken Harward,

Ray Cetrone, Keith Knox, and Lloyd Tharel. i would also

like to thank Gary Brook%Dave Lingl~ andJon Loeliger
for their careful review of W papa.

9.0 Trademarks and Copyrlght8

(‘ONWZX and the CONVEX logo (“C”) are registered

tmdernarh of (XINVEX cotnputa corpmtion.

[JNIXis a trademarkof AT&TBell laborataies.

x wmdow System is a mdemark of M.I.T.

A Complete Protocol Command Llat—.. .—.——.

llIISappendix contains a complctc list and description of

:dl the cm.mands within tbe mrnotc &bugging protocol.

A.1 CONNECT Command8

C_CONFIG

C_DEBUG

C_ABORT

C_ERROR

‘Ibe C_CONFIG COMXMOdisthctirst
packet sent to the remote server after the
low kvel connccuoo (i.e. ‘1’12P/IP)has
been established. Tlds command will
inform the remote semr of the local
clients protoml version and architecture.
llcranote server should verify that it can
wcwkproperly with the Iocd client and
then reply with a mcasagethat indicates
its architecture,p-l version,max
packetsize,andan indication of
compatibility. It is the remote servers task
to decide if the protocol versions arc
compatible.

To aid in dcbuggkg the connection to thC
mmotcscrwer andthcoperatioo of the
SCIVeritceif, servers should support a
debug mode which can be enabkl with
this ccxnmand. No reply is expected from
this command,

Abort any operation the remote server
my be performing and reset it to a hewn
state. lltiscan bcusedin respcmsetoa
user interrupting the load client during a
long operation on the remote (such ma
reading large amounts of data). There is
nodatamsociad with this command.

Tbix nwmm~ & initiatad by the remote
sawer. If any error other than normal
crrcrdetectionwhilehandlingacommand
packetisencountertxlthenaC-ERROR
packetissent to thedebug client. It is tbc
responsibility of the client to display the
emr rncssagcto the user.

C-TERMINATE
Terminate the connection between the
local client and the mmotc server. The
remote server shotdd rchxc any
resources it has acquired on behalf of this
connection and then exit. If the remote
.scrveris controlling an executing prows,

then process should either’ he killed (if N
was crcatcd) or detached (if it was
attached). Them is no &M ~.so~l~ted wl~l
this mmman d.

20 of 30 CXdb: The Road to Romcd- Dobuggtng

{,’/4

Tradonwrka ●nd Copyrights

A.2 FILE CommanehJ

F_OPEN

F.CLOSE

F_SEEK

F_READ

F_WRITE

F.SETCWD

Rqucsts tbc remote suvcr to open a
spcci6cd Me for further processing. llc
opco mode (i.e * rad/titc, or write)
will also be Specitlcd.

TM ~Cplyto the F-OPEN cunmand w~
sqxafy tbc file handle (like a file
descriptor) forultcirl later comands
referencing this fik.

Rquexusthcr cmotescnfcrt ocloscafile
previously Opened.m file to Cloacis
spcdlcd by file handle.

Rqucsts tbc remote server to seek to a
specified location within a given file. Tbc
seek is an absolute offset fkosntbe start of
tbc tile; rclatwe seeks arc not suppmed.

Rqucsts the remote server to read a
spccilied amount of data born aglven file.
TllC read begins 8t the Current file
position. Tbc currentdle positias is
U@tCd by the number of bytes red

7bc reply, which is a multi-packet
message, contains the data requested.

Rqucsts tbc remote server to write a
spccificd amount of dafa to a given file.
Tbe writing bcgms at tbe current file
position. Tbc current tile positloa is
updated by the number of bytes written.

Specifics the directory patbnamc that the
remote swcr should usc to interpret
relative path names. Tllc actusl
mtcrpmxauon of thr @b wrnc is server

dcpcndcnt.

A.3 PROCESS Commands.—— .—

Specifics tbe pa(b name of tbc cxccutztble
i manipulate’. ibis must be spccificd
before a subsqucnt P_C1l.EATE
cwmmand can be issued. h is the
responsibility of the remote scrwr to
verify that the MC exists, can bc acccsscd

ml is a wdid executable.

P_sETI%NV

P_AITACEi

P_DETACE

P_cREATE

P_KILL

Specifics the environment that a created
target process will staxt with. This may not

bc applicable to all architectures.

Mtachtoaproccssmrmingonth cremotc
host. The idcntdlcroftbcprocesstoattacfI
to maydifferbetweenarchitectures. On
moat Unix systems it wiJl be a processid
(Pm).

Dc@b @ cumcnt processand let it
tmntinuc mnning outside the remote
Serverscontrol.

Create a pmccss from rhc executable
speciikd in a previous P.SETEXEC
command. The arguments to supply tbe
psuccssarc spccificdas ptutoftbis
command.It is tbcresponsibilityof the
HCr topCffOrMwildcardCXplUKliOOand
I/Omlirccdon basedoh theargumentlist,

Tcminatc the uugctprocew. Do notsend
tbc reply until the target is killed.

P_PROCIBJQ Inquire on the target POMSS’ state. The

P_THDINQ

reply indudca, among other thing% the
number of threads, tbe signal andsub-
code that caused it to stop or die andi CP(J
time consumed,

Inquire on tbc state of all threads or a

P_(XTCWD

P_SETDIR

specific thread. A thread id of -1 indicates
all threads. Information rctricvcd is
similar to that of P_PROCINQ, but on a
pcrthmad bmis.

(kc tbc currmt working directofy of the
targetpmccss.

Set the initial workingdimcto~ forthe
targetpoccss, Wbcn tbc remote server
mates tbc target process it wdl first chfhr
to this directory.

P_STATECHANG E
This ‘s& h initiated by the remote
server. Wbcn the server sen~~this
messageit indicates thnt the txrgct procms
has changed state (ioc. stopped) for some
reason. Tbc local client should send

P_PROCINQ and f>_llUllNQ comr,mnds
to dctcrminc tbc ncw suttc of the +roc+css.

CXdh: Tho Rod to Rornoto Chbuflglng 21 of 30

\l,

Tmdonmrite ●nd Copyright.

P.STCN$ Stop tbc ~et process. ~e remote server
Sboldd perform Whatcvcxoperation is
nccmary to stop tbc extmdon of the
=get process. Tbe ~~ly should not be
sent until tbe ploccse has Stopped.

P_THDS’IT3P Prcparc the indicated thread to SiDgk S@
whcntbeproaas isrcsumcd. Asigttrd
may bcspccificd togivctbcthrcdupoo
rcsumptioo.

P.THDCONTPreptuc rk indicated thrcd to continue
wbcrJtbcproccss isrcsumcd. Asignal
may bcspc!ciflcd togivethc tbrcadupott
resumption.

P_RESUME Resume tbc execution of tbc target
pfLKeSS.Tbc P.THDSTEP and
P_THDcoNT COmmmds should have
bccnuscdto spccifybow cacbthrcadwilJ
execute priorto using thiscommand.

P_RDR.EGSEX’
Rc.ad● spccifledtegistcrset fmn a
specific - within the~et process.
I%ebindingof registerset numberto
actualregistersis xcbhccmrc dcpcndcnt.

P_WRREGSET
Wntc a spedcd registerset in a spdfic
thread within tbc target prowss.

P_SEEK Rqtwsts tbc remoteserverto seek to a
specified location witti tbc process
image, TtJCseek is to a virtualaddress
within tbc addressspce of tbcpwccss;
relativeseeks arcnot suppatcd.

P..READ Rqucsts M remote server to read a
specified smount of data from tbc process
image, Tbc read be@a at tbc current
inqe position. llc cumnt hnagc
position is updatedby thenumberof bytes
read. Since individual threads can have
private memory the tbmd to read from
must be spcdicd.

P WRITE Requests tbc remote server to write a
specified smount of data to tbc process
image. Tbc writing begins at tlw current
image poshjon, ltic currentimage
position is updatedby tbcnumberof bytes
wriucn,

P.STDINDATA
Sends data &ornthe local client to be sent
tothctargct proccss’ stdin.lllisis
nmnallydat atypcdbytb cuscroffbc
local Client.

PJWDOUTDATA
Thb mcaage b Initiated by the remote
eerver.Whentbc serversends W
messageit indicatestbctargetpmc.cssIUS
writtca~to stdoutandit ncdstobc
bandlcd by tbc local client.

P_STDERRDATA
Tbb ~ b kdtiated by tbe remote
94rvero W&II tbc server scads this
messageit indicates tbc target processhss
wrktcndatatostdcrrao ditacedsto be
bandkl by tbc local Clknt,

B Protocol Daflnition Example

A ctmsi~b amount of &fWm&tkt W= dfly~ itl tbC
dcscriptioa of the protoa)l dcllnition+ :! is gcncraily diffi-
cuk toscc bw all tbc @ccesfit togedwrwitlw! nrcason-
abk cxampk TIJCexamplepmscntcdIMOWis a trimmed
version of tbc mud RDP used by CXdb. F@rc 7 con-
tains tbc protocol ddnition, Figure 8 contains the CXdb
ScrJdcrdriver, figure 9 ColJtainstbc Cxdbraxl”’crdriver.
Even though some packets have been trAmmcd from tbc
dctlnitiom it is still very kngtby. Wkbout tbc MI(3 tools,
the job of constructing tbc protocol handling uJodIJks

would have bcca very time-consuming, cmr-prone, and

boring,

Figuro 8. Exar@e Protocoi Oofinition

N Copyright (c) 1992 Convex Computer

Corporat ion

IIAl 1 rights reserved.
#
#+++++++++++++++++++++++++

U Protocol definition
u++++++++++++++++++++++ 4’++

protocol : RDP
version: 1

max>acke~ : 1.0240

22 of 30 Cxdx Tho Road to Rand. Ddmgghg

Tmdermrka ●nd Copyright

start_cod9_sets:
start_codes: CLTYPE Client types
CXDB
RTKDB

ADTODB
RTKRUN

end_codes :

start_codes: HWARC!HHardware arch
cl
C2
C3
MP1
end_codes :

start_codes: SWARCH Software arch
cxos9_l
cxoslo_o
RTK2_o

end_codes:

start_codes: OMODE File open modes
RDONLY
WRONLY

RDWR
end_codes :

start_codes : REGsL?T Register sets
SCALAR

VECTOR

CONM
end_cocles :

start_codes : PSTATE Process state

[{UNNING
STOPPEL)

SIGtJALED
EX lTED

cnd_codes :

:;tart_code~ : TSTATE Thread state

RUNN INO
~T~pp~D

I)I;Al)

en(l.-codes:

efl(l_cocle_!;et:;:

!;tc3KL_~YpQ: (3) MMANrJ L’M[)CF’[,[)

start_category: cONNECT C
start_opcode: cONFIG
field: VERSION _4byte
field: CLTYPE _4byte CLTYPE
field: HWARCH _4byte HWARCH
field: SWARCH _4byte SWARCH
field: USER string
end_opcode:

start_opcode: PASSWORD
field: PASSWORD string
end_opcode:

start_opcode: DEBUG
field: FLAGS _4byte
field: LOO _4byte
field: LOGFILE string
end_opcode:

start_opcode:
end_opcode:

start_opcode:
end_opcode:

start_opcode:

ABORT

TERMINATE

ERROR
field: MSG string
end_opcode:

end_category:

start_category: FILE F

start_opcode: OPEN
field: MODE ,_4byte OMODII

field: FILE string
end..opcode:

start_opcode:

field: HANDLE
end..opcode:

~tarL_opcode:
field: I!ANDIIE

CL,OSE

_4byte

SEEK
_4byte

field: NIIYTFX _Hbyte

CXdb:TheRoedto Rwrmtet)ebugghtg 23 of 30

l~rka end Copyrlghta

end_opcode:

start_opcode: PROCINQ
start-opcode: WRITE end_opcode:
field: HANDLE _4byte
field: TOTLEN _8byte start_opcode: THDINQ
field: LAsT -4byto field: ALL _4byte
field: DATA buffer fiald: TID -4byte
end_opcode: en~opcode:

start-opcode: SEKWD start_opcode: SETDIR
field: CWD string field: PATH string
sind-opcode: end-opcode:

end_catego~: sCart_opcode: STATECHANGE
field: PROCNU14-4byte

start_category: PROCESS P end_opcode:
start-opcode: SETEXEC
field: PATH string start-opcode: STOP
end_opcode: end_opcodo:

start_opcode: SETENV

field: TOTLEN_8byte
field: LAST -4byte
field: DATA buffer
end_opcode:

start_opcode: ATTACH
include:

/“ ConvexOS specific ●/
●rid-include:
field: PID _4byte
reset_offset :
include:

/“ ConvexRTS/rtk specific “1
end_include:
field: APPNAME string
end_opcode:
sLart_oPcodO: D~ACH

end_opcodc:

:;Latt_opcod@: CREATE
field: ‘t’01’l,EN_t3byte

flald: I,AST _4byLe

field: NAWS _4byte
fl@ld: ARGS buffer

erld_opcode :

st.art._opcodo: KII,l,

cnd.opcmie:

start_opcode: THDSTEP
field: TID _4byte
field: SIGNAL _4byte
end_opcode:

start-opcode: THDCONI’
field: TID _4byte
field: SIGNAL _4byte
end-opcode:

st.art_opcode: RESUME
end_opcode:

start_opcode: RDRECSE1’
field: T1~ _4byte
field: RECSE1’ ..4byte RECSET
end_opccde:

titnrt_opt”I~de: WRRE@hT

fiald: TID _4byLe
fieldl TOTI,EN -8byto

field: LAST _4byto
field: REGSET ..4bkt~ Rmwr
field: DATA buffet
cnd_opcode:

::L~tL_opcodo: SEHK

field: ‘1’ILI _4byt-e
field: VAIHM _Ht)yLo

24 Of 30 Ch:ThoRoedto RernoloDebugglng

Tmdernarke ●nd Copyrlghtm

end_opcode:

start_opcode: READ
field: TID _4byte
field: NBYTES _8byte
end-opcode:

start_opcode: WRITE
field: TID _4byte
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcode: STDINDATA
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcode: STDOUTDATA
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcode: STDERRDATA

field: TOTLEN _8byte
~ield: LAST _4byte

field: DATA buffer

end_opcode :

end_category :

ar~d_type:

starL_type : REPLY RP[,Y RFLD

start_category: CONNECT C

st.art_opcode: CONFIC
fie!,d: VERSION _4byto

field: COMPAT _4byte
field: PWREQ -4byle

field: IIWARCH _4byte HWAI{C}I

field: sWARcll _4byt.e SWA14CI{

~n(~-~>pcode :

:;tart,_opcde : I’AssWOI{I)

field: VAI,I[) _4byte

vrlrd_(?pc”Ode :

start_opcode: PEBUG
end..opcode:
Start_OpCodO: ABORT
end_opcode:

start_opcode: TERMINATE
end_opcode:
end_category:

start_category: FILE F
sLart_opcode: OPEN
field: HANDLE _4byte
end_upcode:

start_opcode: CLOSE
end_opcode:

start_opcode: SEEK
field: P@ _8byte
end_opcode:

start_opcode: READ
field: TOTL,EN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcode: WRITE

field: NBYTES _8byte

end..opcode:

start_opcode: SL?TCWD
end_opcode:
end_category :

RLart_categOry ! PR(M.llSS P

~tart_opcode: SETEXEC
en A_opcode:

start_opcode: smmw

ond_opcode:

‘;tar~_OPCOd@: A’I’’l’Ac:ti

ond_opcocle :

fit,~rt._opcode: [)~:1’A(.:11

~nd_opccdo :

CXdb:ThoRo@d toRmtotoOebugglng 26 Ot 3~

,10

I reanmrke ●nd Copyrl@e

s tart.opcode: CREATE
end_opcodo: start_opcode:

end_opcodo:
start_opcodo: KILL

STATECHANCE

end..opcode:

start_opcode: PROCINQ

r3tart_opcode: STOP
end_opcodo:

. .
field:
field:
fiald:
field:
field:
field:
field:
field:
field:
field:
field:

STATE _4byte PSTATE

TCNT .4byte
SIGNAL -4byt@

atart_opcode:

●nd_opcode:
THDSTEP

SUBCODE _4byto
ESTATUS -4byte start_opcoda:

CORE -4byte end_opcode:

UCPUSEC _4byta

UCPUMS _4byte start_opcode:

SCPUSEC _4byte end_opcoda:

SCPU?49 -4byte

PID -4byta fitart_opcode i

THDCONT

end_opcode: field: TCYTLEN
fioldf LAST -4byto
fiald: DATA buffer
*nd_opcode I

start_opcodm: THDIt40
fieldl TOTLEN -8byte
field: LAST _4byte
Cield: NTHDS -4byta
include:

/’ Remaining fields repeat p-r
thread . 0ffsot6r are relative to
Lhread entry.*/

start_opcode: WRREGS171’

●nd-opcode:

atart_opcodm: SEEK

field: VADDR _8byto

end_opcodo:end_include:

rcset_offset :
fle!d: TID _4byte

field: STATE -4byte T5TATE
field: SIGNAI, _4byte

[ield. SUHCODE _4byto

start_opcode: READ

field: Tmv,m _tibyta

field: lJAST _4byLe

field: L)ATA buffar
field: WPID _4byte

flol(i: UCIIJSEC _4byte

finld: UCPUMS -4byte

flalli: SCPUSEC -4byte

field: SCPUHS _4byta

Illt’)ude:

/“ TNAW field only exirata for
f’.Jllvp~~’rS/r-t)rar~hltmcture ●/

nnd ,in(:lude:

fi-1(1: ‘1’tlAMH I:t.rinu

?*l)(i ~)l)(”o(ln !

end_opcode:

xLarL_opcodei

fiald: NUYTKS

crr)d..opcode i

WRITE

_Nbyt.e

r:l.ar”L..Llpcode :

end.,.opr-odo :

!H’1) I N1)ATA

s’[’[m)IJ’I’I)A’I’A

28 of 30 C~:TheRoedto RomoteOobug@Vl

Tmdermrke and Copyrlghta

●nd-opcodo I
end_catogory I

end_typ :

end~rouocol :

Flgum 0. Eml’?@e sender SpdIOanal

U Copyright (c) 1992 Convox Computer

Corperat ion

O All rights reserved.
i

croata: nmndmr

name~attorn: cltsnd_tc_tt

start.typol COk04AND

start_cat.agory: CONNECT

sLart_opcodo: _all-
end.opcod-:
end-category:

s~art_catego~yl k’IllR
l~~art_opcodc: _all_

cnd_opcoda:

orld_catagory :

!:lnl”l, _caLegoI”y: I’H(M-”FXS

!Jill!l.do [’11),AI’I’NA?W iH fOt

tealtlme

!;tiIlt_LJ~~dO:ATTACN

::Pl(?l:t (I’ll))

mrl(i_.f~pcOdOI

t _opcodoI ..all_
{Ipcodo :

I’mlm(JfJly!

y~lF’!

Figure 10, [:xarl@nM@kol :4pecHtcallo41

0 Copyright (c) 1992 Convex Computar
B Corporation
All rights reaarved.
m
craatml
rectiv@r=dispatchPacket,mag~printC
nama>ttern; clcrcv_9c-*C

acarc_lncludo1
#include <atdio.h>
.Includa “common/ExecObject.h”
@include ‘pi/Rwnocalmage.h”
@lnclud@ “pi/SIgchldOueue.h”
Mlncludo ‘lomm/rmtRocalve.h”
end-include!

etart_cyps: COUUAND

start-category: CONNECT

etart-opcodal ERROR
call handleRamotoErrol
and_opcoda:

and_catOoory :

ut.art-catago~l PROCESS
uf.ar~-opcod~: .STATECNANCR
call Sigchld~aue.halldlaSta~n(’hnfltlo
mnd-opcode t

ut.art.-opcudn!sTIX711TDATA
(:all tlantilaRamol,a:;l~toill.”

nl](i-,opcoda I

ul. art-(p-wlal :H’l)El{tlDAl’A
I.fi] 1 llaIl{l]a14@m{)l *!iltlot I

aIIIl_Opl’()(ln :

——
Tmdermrka ●nd Copyright

stare.opcodal READ
handle-fail ExecObject::handleReadFall
call ExecObject::handleReadReply
end_opcode:

start-opcode: WRITE
handle-fail ExecObject::handleWriteFai1
call ExecObject::handleWriteRaply
end_opcode:

start_opcode: SEEK
handle-fall ExecObject::handleSeekFail
call ExecObject::handleSeekReply

end_opcode:

atart_opcode: SE~
handle-fail SemerObj ::handleSetCwdFai1
call ServerObj::handleSetcwdReply
end_opcode:

start-opcodol SETFS
handle-fail RemaceImage:lhandlestdFall
call RemotaImage::handleStandardReply
end_opcode I

mnrl-category I

*r.~rt._caLagory: CONNECT

sl.at”r.-opcode: CONFICJ
h,~mlle-fnll;:erverobj:: handleCor)tlgFa 11
tm,lll Sorverohj: lhandleConflgRoply
i~ll(l-[)pcode:

‘Jllll! _op(”ode; PAsWK)PD
lliIfhllO_fail:;arvetOhj::h+lrldlWLdFa llllrO

1..11 1 ::~tvarobj : :handl@PaunwordRepl y

l~rlll I)p(v)!kr :

Mf!llf _t)~J(’I)!h! ! I)K1lI I(-J

):illlt!lo-fal]!;cirvmrob)::handlef;t.(lk”allljra
1.,11I !;orvort)t~j I :l)fil~(ll@Sl,an&rdRa~)ly

!011(! I)\J(’oil@:

,. ‘ ,1!1 ..011!’ 0110” : All(m’1’
!:AIIIIIU -1.11 I !;nlvprob~ : :lla~\{ll-Alrn)rfl;.~1I
1.,111 !:i!lvmtl)hl::tlsll(!l@Al}orrHal?ly
1111!!,l~ll,l)! loi:

4)11,! i .llmiJ411Y

.. r ,,, ! #.llntJtll Y, I’lulf ’l(!::l

.lt.trl ,11111)11!?, !:I:’I’I,:XI;l ‘

handle-fall RerrroteImage::handleStdFai1
call RemoteImage::handleStandardReply
end_opcode:

start_opcodel SETENV
handle-fail RemoteImage::handleStdFall
call RemoteImage::handleStandardReply
end-opcode:

otarc-opcodel ATTACH
handle-fall RemoteImage::handleStdFall
call RanoteInrage:lhandleStandardReply
end-opcoda:

ntart-opcode: DETACH
handle-fall RemoteImage: :handleStdFail
call RemoteImage: :handleStandardReply
end_opcode I

start-opcodel CREATE
handle-fail RemoteImagel:handleStdPall
call RemoteImaga:~handleStandardReply
●n~opcode t

otart-opcode: KILL
handle-fail RemoteImagellhandleStdFai1
call RemoteImage::handleStandardReply
mnd-opcode:

ntart_opcode: PROCINQ
handle-fail Remr.wfmage::han(!le:;tiiFa!1
call RemoteImage::handloProcStdteRq)Iy
end_opc!odo:

st.art_npcode:THDIN9
hand]w-fall Ramt.eImage::han(ll(]f;l:(iFail
ualm~-t.[FAILr_ODE,_fc, unalgnmi In!:)

uqlect(’1’OTLKN,-t.otlan,Ilnnlgnmdlong
Imu 1

nelw:t([,AST, -Ifiut, trooloaul
NmlMcl:(N’1’HL)S, _nt.hdE, lln=~~Jl~@tl 111~.)
Iaw(’all

Nnmntelrrraua: :tlarl(tle’~lr{lfi{lf;l .tloll,,~~ly
Olld..op(!ml{l :

Ml iir r --oIJf:[da. !:I?I’1)114
tl.lll(lla_rnil !:nrvntobl: :tlntl~llc:il(ll~nllllrl’
t,,ll I ::mIvPIol}l : :tlntltllu::l .If)(l.-irtlllok)ly
ull~l_{j~lr’rli]4! :

Illnll -,oplmlcl: !;’1’{)1~

hnli(lli!.,f.11I l~emf)lmltllntl~: :)1,11111111!:11!1’,11 1
I,m I] llwnt~l Ot!M~O: 11,111,110::1,11111,1llllll,llly

Illl!l .f)pl”{llln ,

28 of 30 CX&lhoFtoad toRomoIoDebugglng

1’

TmdmrmrkS ●nd Copyrlghte

start-opcode: TN-p
handle_fail Ramte Imaga::handlaScdFail
call RemoteImage::handleStandardReply
end_opcode:

start_opcode: THDCOtTI’
handle-fail RemoteImage::handleStdFail
call RemoteImage::handleStandardReply
end_opcode:

start-opcode: RESUME
handle-fail RemoteImage::handleSU3Fail
call RemoteIIruige::handleStandardReply
end_opcode:

start_opcode: RDREGS~
handle_fail RemoceImage::handleStdFail
call RemoteIlmge::handleReadRegsReply
end_opcode:

etart-opcode: WRREGSFT’
handla_fail RemoceImage::handleStdFai1
call RemotwImage::handleStandardReply
end_opcode:

stare-opcode: SEEK
handle_fail RemoteImage::handlsiStdFai1
call RWnoteImage: :handleSeekReply

end_opcode:

sLart-opcode: READ

Ilandle-fall17emoteImage::handleStdFa11
,:,111RwnoteImage::handleReadReply
el)d_[lpcmh? :

KLart-opcod@: WRITE
h,lndle_fallRemoteImage::handleStdFa11
call Remot@Image::handleWrlteRnply
on~!_upcode:

Flguroll, Exan@e@nor~ed Sender Code
. .—...._. —.. —.. - ———— .—— ---

Th&ixanexampk oftbcgencratodcmic fortie~ndcr
drivcrthathdlcathc C-03NFIGandP_ATTACH com-
MaIwia.

void
cltend_C_CONFIG-C~(
BaseRdpTransport & link, unsigned int
-verelon, unsigned int -cltype, unsigned

int _hwarch, unsigned int _swarch,
unsigned int _user_len, const void ●

_userfltr)
[
char ●datap . Packet + RDP_PACKFT_HDRSZ;
int type = RDP_PACKET-COMMAND;
int category = RDP-CATMRYJWJ?JECT;
int opcode = RDP_CMD_C_CONFIG;
DataLen . O;

SETJtDPJID~FLD(Packet, TYPE, type);
SET_RDP_HDKFLD(Packet, CATEGORY,

category);
SET_RDP_HDR_FLD(Packet,OPcODE,opcode);

/’ Now that the header 1s setup, do each
field ‘/

DaCaLen =RDP-CFLD-C-CONFIG_VER~ION_OFF;
SET-RDPJ31D-FLD(datap,C_CONFIG,

VERSION, _version);
DataLen+.RDP_cFLD_C-CONFIG-VERSION_LEN;

DataLen . RDP-CFLD_C_CONFIG_CLTYPE_OFF;

SET_RDP_CMD-FLD(datap,C_CONFIG,
CLTYPE, _clcypel;

DatdLen +=RDP_CFLD_C-CONFIC-CLTYPE_LEN;

Dat.aLen■ 17DP_CFLD_C_CONFIG_HWARCH_OFF:
sET_RDP_CMD-FLD(datap,C_CONFIG,

HWARCH, _hwarchl ;

DatnLen +mRDP_CFI,D_C_CONFJG_HWAR(~H_l.EN;

Dat.aLanm RDP_CFLD_C_CONFIG_SWAIK:ll_(Jt’’l:;
!;l?T_RDP_(Ml_FLD[datap,C_CONFIG,

sWAR(”H, .swa[rh);
Dal.aLen~7RDlJ_(TFLD-C_(TONFI(~_:MAll~.’ll_l,FFJ;

Dat.a!,en= RDP_CFI,D-(-_(:ONFl(;_ll::ENJ)l:l;;

!;E’r_lt[)l>_(M[).-!Yrll ING_l,KN(dcIr.,]P,
(’_(”oNFl(:,II!;ER,_ll’:~’t_l~lll;

l)atal,mnt? Rl)P_AFI,l}_:~l’R IM;_!;’l’lll,EN -l,l~tl;
(;~:,r.-NL) lJ_[~[)_:Y~l{ INL; _lJ’I’lt[(!.ll .Yp, ~’_[’ONII’!~~,

IJ!;KR, 1)111.11’!I) ;

HI r[”l)y[l)al nl)l t , ([”~)llsl (.ll,it*)_lllllht)11 t);

IAnlalinn o- _.llui?l_lOrl t 1;

cXdb:ThoRodto Rormleflebuagkw 29 Of30

{1{

Ratamuac

SET.RDP-HD~FLD (Packet, DATALEN,
OacaLen);

/“ Now that the packet 1s built, send

link. wrlte[Packet, RDP-PACKET-HDRSZ +
DataLen) ;

return;
1

void
cltsnd_P-A’lTACH—COktMAND(

BaseRdpTransporc & link,
unsignd inc ~idl

(
char ●datap = Packet + RDP-PACKET_HDRSZ;
int type . RDP-PACKET-COMMAND;

int caKegory = RDP-CATEWRY_PROCESS;
inc opcode = RDP_C:~_PJTTAC H;
DacaLen = O;

SET_RDP-HDR-FLD(Packet, TYPE, typa);
SETJtDP-HDR_,~D(Packec, CATEG02Y,

catego~l)
SET_RDP-Ht)R-FLD[Packet,OPCODE,opcode);

/“ Now that the heiader is setup, do
each field ●I

DataLen = RDP-CFLD_P_AT7’ACH_PI/~-OFF;

SET_RPP-CMD_FLD(datap, P~’iTAC}:,
PID, -pidl;

DataLen +. RDP_CFLD_P_AT7’’ACH-PID_LEN;

SET_RDP_HDR_FLD(Packet, DATALEN,
Dat.aLen);

/9 Now that rho packer in built,sand Lt”i

lirlk.wrlte(Packet, RDP_PACKET_HDRsZ ~
DataLenl~

Roterencou

rBum191]

[Crn@la]

[Coo@lb]

UWT90]

[Staw]

[stB191]

l’WeMi84]

Buyse,R. andCblam14 M.,”AUW
IntufMestmtegyfor Cxdb’’,presclltcdat
Xldbldon91.

CONVEXCXdbRefemoce, lstElidon,
CouvexCanpuurCapomthm (1991).

coNvExcxdbuSer’sGuide,lst
_COnvexCosnputer Corpomdon
(1991).

hwmucaS.,”M.ixed Mode Debugging:
A HICb-I.mel Multi-- Debugger
fcw@oS+= and Unix”,BBN Advsnced
Colnpute’r% inc., AugusL 1990.

GDB Mxo@ Third Editiom Wchard M.
slalJm419s9.

Stmepy, L., Brooks, G., Haasca, G.,
S&un~ S., “CXdb A New Mew oa
O@lbdcd, Procedngs of the

S#Ka=Wu@mbW8@? w-
.

Wek C. aml Milliken, W., “Loader
Debu#ger Protocol”, Arpa Imernet l?.FC-
9@, BBN (kmununicadcms Corp., hly

1984.

3ooi30 CXCRWTha FloadtoRomd. OdtUgfJlnO

Tim

w-

CXdb:
u

The Road to Remote Debugging

Larry V. Streepy, Jr.
Rob Gordon, and Dave Lingle

Convex Computer Corporation

October 5, 1992

CXdb: The Road to Remote Debugging Streepy - 1/17

~:

Introduction
‘-

+Motivation

+Protocol Description

+ Message Interface Generator

4Sewer Overview

● CXdb Abstractions

*Conclusions and Future Directions

CXdb: The Road to Remote Debugging Streepy - 2/17

Motivation

● Typical computing configurations include cooperative

●

networks with multiple, often heterogeneous, hosts.

Many special=purpose compute sewers, real-time
systems for example, require front-end machines to
provide zccess and control.

While performing kernel debugging the application
environment of the target machine is not active.

CXdb: The Road to Remote Debugging Streepy -317

Remote Debugging Environment

.-..-
lJ3d Fklst ,.- \

Rm@e Host
A B
r

~dh 4 : &emon:
& :

: 4
..*

* ~
* ~CXdb opens a channel to the Remote ~

Disk -

G m

~Daemon (which can tK inetd).
. 4

Targe!
.

~The Daemon then creates the Remote ~
Iz

~Server which controls the target process. ~
1

& k

~argti Disk

~The Remote Debugging Protocol ~
i specifies IiWcommunication protocol ~
~across the remote than.nL)L ,

:

~The local client accm the remote ~
; proc- and file system via protocol ~
: commands.

..- ---------.. ------------.--- .-.4

CXdb: The Road to Remote Debugging Streepy - 4/1

m
Remote Protocol

-=

RDP Packet Layout

Packet Header
/%.%\..........-.”....-...-...—-..—--.. .-.— - /.... ..,....——-...—..-. ,,..O.... /------ ...v %

category opmcle Data Length Packet Dab

o 1 2 4 78 n
byte OffSet

Type There are two types of RC)P packets: Command and Reply,

I$:otall command packets require a reply. Strict command-
reply model.

Catego~ There are three major operation categories:

CONNECT

FILE

PROCESS

Control of remote connection and
configuration. Includes session initiation,
version arbitration, configuration control, and
session termination.

Access to files on the remote host. Inciudes
open, seek, read, write, and close.

Access to and control of the remote process.
Includes creating, attaching, and detaching a
remote process; access to process memory,
registers, attributes, and state.

Opcode The specific operation, or command, within a catego~.
There are currently over 120 commands In all three

categories.

Data Length The length of the body of the packet. This may be zero.

Pack~! Data The data associated with the command or reply, if any.

~Xdb: The Road to Remote Debugging Streepy - 5/17

—~

m

L-
Message Interface Generato~
Design Goals:

+ Decrease the time required to develop the
protocol support modules.

+ Increase the maintainability of the protocol
support modules.

+ Support development of servers in both C
and C++.

+ Support our automated testing facilities
already in use on CXdb.

Supported Features:
+ Generation of test drivers for use in

automated testing.

+ Generation of sending functions that
construct and send protocol packets.

+ Generation of receiving functions that break
apart protocol packets.

+ Generates code in both C and C++.

CXdb: The Road to Remote Debugging Streepy I 6/17

Protocol Definition

+ Machine-processable description of the
protocol.

+ Used to generate an include file which
contains manifest constants that describe
the protocol.

+ Used to control the process of generating
source modules that automatically handle
operations on the protocol packets.

High Level Protocol Definition Structure

PROTOCOL: <name>
VERSION: <vmion>
MAX_PACKET <sizes

START_CODE_SETS:
ecode set definitions>
END_CODEi_SETS:

START_TYPE:
<packet type definitions>
ENIl_TYPE:

END_PROTOCOL:
-———— ——— I

CXdb: The Road to Remote Debugging Streepy - 7/17

Example Definition
~rotocsol: RDP
version: 1
max~acket : 10240

etart_code_aet~:
atart_codes:
CXDB
RTKDB

end_codeg:

start_~odes:

cl

C2

C3
MP1
end_codes :

CLTYPE

HWARCH

end_code_sets:

start_t~e: COMMAND

Client types

Hardware arch

CMD Cl?LD
atart_cate~ory: CONNECT C
start_opcode: CONFIG
field: VERSION _4byte

field: CLTYPE _4byte CLTYPE
field: HWARCH _4byte HWARCH
field: sWARCH _4byte SWARCH
field: USER string
end_opcode:

CXdb: The Road to Remote Debugging Streepy - 8/17

start_opcode: DEBUG
field: FLAGS _4byte
field: LOG _4byte
field: LOGFILE string
end_opcode:

start_opcode:
end_opcode:

start_opcode:
end_opcode:

start_opcode:

ABORT

TERMINATE

ERROR
field: MSG string
end_opcode:

end_category:
start_category: FILE F
start_opcode: OPEN
field: MODE _4byte OMODE
field: FILE string
end_opcode :

start_opcode: WRITE
field: HANDLE 4byte
field: TOTLEN ‘8byte—
field: LAST _4byte
field: DATA buffer
er~d_opcode:

end_.category:

CXdb:TheRoad toRemoteDebugglng Streepy 9/17

Star~_category:

start_opcode:

PROCESS P

ATTACH
include:
I* ConvexOS
end_include
field: PID

specific */
.
.

_4byte
reset_offset:
include:
/’ ConvexRTS/rtk specific */
end_include:
field: APPNAME string
end_opcode:

start_opcode: CREATE
field: TOTLEN _8byte
field: LAST 4byte
field: NARGS– 4byte—
field: ARGS buffer
end_opcode:

start_opcode: STATECHANGE
field: PRC)CNUM _4byte
end_c)pcode:

end_cate~ory:
end.t~e:
end~rotocol :

C.Xclb:TheRoad toRemoteDebugglng streepy-’lo/l7

~— 1

wfl

Driver Specifications
w

+The M[G tools generate source code to manage the
packets within the protocol.

+The source code generation is controlled by the
protocol definition and a driver specification.

Four kinds of drivers are supported: generators,
dumpers, senders, and receivers.

These four types are also broken into two general
categories: senders (generators and senders) and
receivers (dumpers and receivers).
[isn’t the evolution of names wonde&l?J

CXdb: The Road to Remote Debugging Streepy - 11/17

Example Driver Spec
create: sender
name~attern: cltsnd_%c_%t

start_ ty-pe: COMMAND

start_category: CONNECT
start_ opcode
end_opcode:

end_category:

.

. _all_

start_category: FILE
start_ opcode: _all_
end_opcode:

end_category:

atart_cate~ory: PROCESS

Just do PID, APPNAME is for real-time
starK_opcode: ATTACH
select (pID)

end_opcode:

end_categcry:
end..type:

~Xdb: The Road to Remote Debugging Streepy -1217

Example Receiver Spec
create: receiver= dispatchPacket, msg=print f
nafne_pattern: cltrcv_%c_%t

start_ ~nclude:
#include cstdio. h>
#include “common/ ExecObject .h”
#include “pi/Remote Image.h”
#include “pi/SigchldQueue. h”
#include “iomm/rmtReceive .h”
end_include:

start_type: COMMAND

start_category: CONNECT
start_ opcode: ERROR
call handleRernoteError
end _opcode:

end_category:

start_ category: PRGCESS

start_ opcode: STATECHANGE
call SigchldQueue .handleStatechange
end_opcode:

start_ opcode: STDOUTDATA
call handleRemoteStdout
en(~_opcode:

end_category:
end_type:

CXdb: The Road to Remote Debugging Streepy - IW17

,!,1

MIG Usage Experience

All design goals were met.

Development time was greatly reduced and
maintainability was dramatically increased.

The table below shows some source code statistics.

Source Lines
I
MIG source c-&le - Perl (22% comments) 3320

IProtocol Definition

IDriver s~ifications 991 I

IGenerated source code 21341 [

CXdb: The Road to Remote Debugging Streepy - 14/17

:.

m-

Remde Server Architecture
-=

I

..-

CzzzFd------%+-----;

-rRemote
Correction

IEa

Machine
Boundary

L ;
m coNNEff commands

14 : b
C&

‘1

CXdb: The Road to Remote Debugging Streepy -1 5/17

‘-~
CXdb Process Interface Abstractions

[KKhannel inferiorl%ocess SignalControl
,

L.

1
I threadControl

T’hreadMemory

ThreadStack

_e pointer

~ data use

1Proclhtiontrol
I

tExeKontrol

4 , ,

I ProcessImage I I memBuffer I

Corehnage I
I .

Exedmage
I

1

~db: The Road to Remote Debugging Streepy - 16/17

m
=

Conclusions and Future Directions
--=

+The implementation of the CXdb remote debugging
system used several features not typically found in
earlier (or traditional) systems:

=The development of the MIG decreased development time and
maintenance overhead in the protocol manipulation routines.

-Software abstractions within the local debug client minimized the
modifications required to implement remote capabilities.

-The clean separation of tasks between the debug client and remote
server decreased the complexity and development time of the
remote sewer. The remote sewer is a machine level debugger.

+Several classes of debug operations can benefit from
remote debugging technology: Kernel debugging,
debugging over dial-in lines, and handling embedded
SYStWT’lSm

CXdb: The Road to Remote Debugging Streepy - 17?17

User Needs Discussion Summary

The following Is an unordered Ust of opinions and desired debugging capabilities expressed
by the group during the user ❑eeds discuslon.

minimize context switches

intuitive and familiar user interface
easy to use for the first-cnsual user
easy access to complex features

breakpoint dependendes
break at Iocatlon A U lastbreak Iocatlon was location B

support a mix of shared memory and dlst. ~buted memo~ models

cvercome the user education problem

su~port debugging large codes
deb~gger Impact on code performance an Lsuuefor large codes

effectively handle the transition from fortran 77 to fortran 90
performance, complexity and portability concerns

provide tools to debug code someme else wrote
program decompodtion, etc.

MIMI.) extension of where tr=

fast dynnrnic print statements

fast tmclng via patching and/cm hardware

pwst mortum statk annlysls tools
apply fortran heuristla

debugging support for homogeneous clustem of workstntlons

hardware support for proflllng, state at Interrupt, watchpdnt.% traclnR (buffer)

ttml Integration

dcl)ug optlrnlzed code

code In continuous state of dcvclopmmt

encourage users to use a debugger
overcome perception that debuggers are hard to use

lcwate source statement that caused program abort

standards would facilitate debugger development
for example, user (commo~d line and GUI) and symbol-table interface

effectivesupport forlow-leveldebugginbt.lueto
mustoccasionallydebug code with no symbol table
program state has changed fkom abort condition
sometimes required due to lack of debugger functionality

graphical rep~ntation of
program structure integrated with proctss control
data structures

breakpoint at ent~ if called by a particular routine

!ncrementai compilation (patching) iinked with brea.kpoJnts

— -—,.

+

:::

-.----—.. . ._

SD ’92

P

r

o

c

e

e

d

i

n

$!

s

I,ANI,

l. A[JR#

92-562

